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Two players engage in a repeated game with incomplete information on one side, where the
underlying stage-games are zero-sum. In the case where players evaluate their stage-payoffs by using
different discount factors, the payoffs of the infinitely repeated game are typically non zero-sum.
However, if players grow infinitely patient, then the equilibrium payoffs will sometimes approach the
zero-sum result, depending on the asymptotic relative patience of the players. We provide sufficient
conditions that ensure a zero-sum limit. Moreover, we provide examples of games violating these
conditions that possess “cooperative” equilibria whose payoffs are bounded away from the zero-sum
payoffs set.

1. Introduction. Two players engage in a repeated game with incomplete information.
The state of nature is chosen according to a known prior and the selected state is informed
only to one player. Then, the zero-sum game that corresponds to the selected state is played
infinitely many times. The uninformed player partially learns during the course of the game
about the realized state by receiving signals, which depend also on the informed player’s
actions. For an extensive discussion on repeated games with incomplete information the
reader is referred to Mertens, Sorin, and Zamir (1994). As opposed to most of the existing
literature, we assume different time preferences: the players discount their future payoffs
with respect to different discount factors.

The issue of different discounting was treated by Lehrer and Pauzner (1995), who looked
at complete information repeated games. They showed that in the case of a zero-sum game,
the only Nash equilibrium payoff of the repeated game is the value of the stage-game. Thus,
although the repeated game is non zero-sum, the only equilibrium payoff is zero-sum. This,
however, is not the case in incomplete information games.

Consider, for instance, a game where the informed player is very impatient or almost
myopic. He can exploit, right at the outset of the game, his informational advantage, receive
relatively high payoffs at the beginning and reveal what he knows to the relatively patient
player. The latter, who cares more about long-run stage-payoffs, receives high payoffs at
most stages due to the information he acquired. Thus, the players receive high payoffs in
different stages. Since the players have different time preferences, this plan (a) can be
sustained by an equilibrium, and (b) induces a non zero-sum pair of payoffs in the repeated
game (for an explicit example, see Example 1 in §2).

This scenario attests to the fact that not only is the game itself non zero-sum, but also that
some of the equilibrium payoffs may be non zero-sum. In other words, despite the fact that
the stage-games are purely competitive, different discounting gives rise to some cooperation.
The high payoff received by the informed impatient player is a result of a complete utilization
of his information in the beginning of the game. However, in case the informed player is not
so impatient, in order to take advantage of his extra information, he should split the revealed
information over a greater number of periods. This, in turn, entails that at each period his
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payoff must be reduced (compared to the payoff received at a period in which all the
information is revealed at once).

These arguments suggest that the informed player cannot exploit his information for a long
period of time. Moreover, if he becomes more and more patient, then his informational
advantage becomes negligible: after a short while, when almost all his information is being
revealed, the game played is like a complete information game, where the equilibrium payoff
is zero-sum. Therefore, one may expect that when players become patient, the equilibrium
payoffs will become zero-sum.

It turns out that this intuition is misleading. The equilibrium payoff may or may not
become, in the limit, zero-sum, depending on the converging path of both discount factors
(henceforth, discounting path) to 1. Finding out when equilibrium payoffs are necessarily
zero-sum in the limit when players become increasingly patient, is the goal of this paper.

We divide the discussion into two cases: the first is when the informed player (player 1)
is more patient than the uninformed one and the second is when player 1 is less patient. Due
to the asymmetric nature of information, the results in these two cases are qualitatively
different. It turns out that the ratio (12 l 2)/(1 2 l 1) is the appropriate measurement for
the players’ relative patience, wherel i is playeri ’s discount factor. This ratio will determine
whether the equilibrium payoffs are necessarily zero-sum in the limit or not.

When the informed player is more patient, he will get, in any Nash equilibrium, a payoff
very close to the value of the infinitely repeated zero-sum undiscounted game. If, in addition,
the uninformed player is not significantly less patient than the informed player, in the sense
that the ratio (12 l 2)/(1 2 l 1) is bounded from above, then his equilibrium payoffs will
also converge to the same value. Thus, asymptotically the equilibrium payoffs are zero-sum.
The precise statement of these results will be provided in Theorem 1 in §3.

In §4 we link together the discounting paths that ensure a zero-sum limit payoff and the
convergence speed of the discounted repeated games’ values, with identical discount factors,
as the discount factor converges to 1. Theorem 2 states that if the speed of convergence is
high relative to the ratio (12 l 2)/(1 2 l 1), then the limit payoff is zero-sum.

In the other case, when the uninformed player is more patient, if both players become more
and more patient in a similar manner (in the sense that the ratio (12 l 2)/(1 2 l 1) converges
to 1), then the equilibrium payoffs will converge to the zero-sum value. An explicit
formalization will be given in Theorem 3 in §5.

Regardless of whether the informed player is more patient or less, when the discount
factors become singular (in the sense that they assign most of the weight to disjoint sets of
stages), the limit of the equilibrium payoffs may be non zero-sum. We provide two examples
to illustrate this phenomenon: one for the case where the informed player is more patient (in
§3) and one for the other case (in §4).

Players with different discount factors have also been recently dealt with in the context of
reputation effects. In the reputation literature, a very patient player, the informed one, plays
against one or a sequence of impatient (frequently myopic) players (see for instance,
Fudenberg and Levine (1989, 1992), Schmidt (1993), Celentani, Fudenberg, Levine and
Pesendorfer (1996), Evans and Thomas (1997) and Sorin (1997) for a comprehensive
overview of the reputation literature). The message of the reputation literature is that the
informed player, having the advantages of both information and patience, obtains at least his
true type Stackelberg payoff. He can do so by behaving as if he was of a certain type, his
“commitment type,” for a long enough time, building up a reputation of being “committed”
and by exploiting this reputation.

Our paper differs from the reputation literature in spirit and in technique. First, having two
long-lived players, as we have, gives rise to agreements. The relatively patient player might
agree to act benevolently towards his opponent in the beginning of the game, with the
promise to get reimbursed in the future, which is less significant to the impatient player. In
this way both players can achieve strictly more than their individually rational levels (see
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Example 3 in §4). In other words, despite the zero-sum underlying games, there is room for
mutually beneficial intertemporal trading of payoffs. This cooperative behavior stands in
sharp contrast with the spirit of the reputation literature results.

Second, and related to the first, in the reputation literature, myopic players (or those who
play stationary strategies over finite blocks) can use only the information they have gathered
up to the point of play and, more importantly, have no punishing power. Hence, they cannot
enforce a specific path of play. Our work, in contrast, deals with a less patient uninformed
player who has an infinite horizon of moves at every stage of the game. Thus, like the
informed player who can punish his opponent (by withholding information and/or by using
an undesirable action), the uninformed player can also punish his opponent by reducing his
payoff to the individually rational level of the corresponding infinitely repeated zero-sum
game. Cripps and Thomas (1995) are an exception in that they treat the case of two players
that have different discount factors. They show that the more patient informed player can
ensure what he could get in the undiscounted game. However, a major difference between
their model and ours is that there the uninformed, usually the impatient player, knows his
own payoffs, while here the uninformed player typically does not know them. Third, since
we deal with underlying zero-sum games, the Stackelberg payoff of each type is the
equilibrium payoff of the corresponding zero-sum game and the lower bound on the payoff
of the long-lived player is the individually rational level in our framework.

2. The model and an example. A two-person repeated game with incomplete
information on one side consists of a finite state spaceK, a set of zero-sum games {Ak}, k
[ K, a probability distributionp over K, and an information structurew 5 (w k) k[K. w k

5 (w 1
k, w 2

k) is a function from all possible combinations of the players’ actions to pairs of
signals.w i

k is the signal given to playeri . We assume that the signal a player receives contains
his last action. Typically, the players’ signals are private, but in most cases treated in the
literature the signals are the actions played. In other prevalent cases the signals contain, on
top of players’ own actions, their payoffs.

The repeated game proceeds as follows. At stage 0, a statek from K is chosen according
to p and is told only to player 1. At any stage of the game, starting at 1, each player takes
an action, which may depend on his previous signals and acquired information. He then
receives a signal according tow i

k and a payoff, corresponding toAk. Notice that sinceAk is
a zero-sum game, ifat is the payoff of player 1, then2at is the payoff of player 2.

Formally, let Hi be the set of all playeri ’s finite histories of signals. A (behavioral)
strategyof player 1 (resp. 2) is a function fromK 3 H 1 (resp.H 2) to the set of his mixed
actionsD(S 1) (resp.D(S 2)). Typically a strategy of player 1 is denoted bys and of player
2 by t. A pair (s, t) and the priorp induce a probability distribution over the infinite streams
of stage-payoffs. Thus, the stage-payoffs are random variables.

Here we deal with infinitely repeated games in which the two players evaluate their infinite
stream of payoffs differently. More precisely, we associate with playeri the discount factor
l i . If { at} is the sequence of the stage-payoffs received by playeri , his repeated game payoff
is

~1 2 l i!O
t51

`

l i
t21at.

We denote the game defined above byG( p; l 1, l 2). Although the prevailing matrices are
zero-sum,G( p; l 1, l 2) for l 1 Þ l 2, is typically not a zero-sum game.

Let at be player 1’s payoff at staget. The pair (s, t) is a Nash equilibriumof G( p; l 1,
l 2) if Es9,t9 [(1 2 l i) ¥ t51

` l i
t21(21) i11at] is maximized withs whent9 is fixed att and i
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5 1 and, moreover, if it is maximized witht whens9 is fixed ats and i 5 2. We denote
the set of equilibrium payoffs in the gameG( p; l 1, l 2) by V( p; l 1, l 2). Note that since both
players’ payoffs over the compact sets of behavioral strategies are continuous, existence of
an equilibrium pair follows from standard fixed point arguments. The projection ofV( p; l 1,
l 2) to the i th coordinate is denoted byVi( p; l 1, l 2). In this set-up both players are payoff
maximizers.

Let v( p; l) be the value of the zero-sum gameG( p; l, l). In the case wherel 1 5 l 2

5 l, the setV( p; l 1, l 2) contains only one pair, (v( p; l), 2v( p; l)).
It is known (see Mertens, Sorin, and Zamir 1994) thatv( p; l) converges uniformly onP,

asl goes to 1. We denote the limit byv( p; 1).

EXAMPLE 1. Consider the following game where the signals consist of the players’ own
action. There are two states of nature (i.e.,K 5 {1, 2}), and the distribution overK is p 5 (1

2,
1
2). The payoffs are given by the following matrices.

A1 5 S 1 0
0 0 D A2 5 S 0 0

0 1 D .

Consider any Nash equilibrium of the gameG( p; l 1, l 2), where the discount factor of player
1, l1, is very low and that of player 2,l2, is high.

Note that whenl1 is low v( p; l 1) is close to1
2. It implies, in particular, that player 1’s

equilibrium payoff is greater than14. On the other hand, since player 1 is very impatient he
reveals his information at the beginning of the game. Hence, in most of the stages the
expected payoff is close to zero. Player 2 is patient, and therefore his equilibrium payoff is
close to 0. Thus, the players’ payoffs are not zero-sum.

The intuition behind this example is that player 1, having a low discount factor, is eager
to receive high payoffs at the first stages of the game. In order to achieve this goal, player
1 reveals all his private information in the initial stages. Player 2 benefits from player 1’s
impatience by learning the true state of nature quite early.

This example suggests that the advantage of player 1 is in his impatience. In other words,
the high payoff player 1 receives is merely a result of a complete utilization of his private
information in the beginning of the game. One may, therefore, expect that since player 1
cannot exploit his information for a long period of time, if he grows infinitely patient, his
advantage will become negligible. As a result, the limit payoffs will necessarily be zero-sum.
We will see that this intuition is incorrect.

A natural question to ask then is, under what conditions doesV( p; l 1, l 2) tend to the
singleton {(v( p; 1), 2v( p; 1))}, as one of thediscount factors or both converge to 1? It
turns out that whether or not the set of Nash equilibrium payoffs tends to a singleton depends
on the asymptotic relative patience of the players.

DEFINITION 1. A discounting path is a pair of continuous functionsl 1, l 2 : [0, 1] 3 [0,
1] satisfyingl 1(v), l 2(v) , 1 for everyv [ [0, 1) and eitherl 1(1) 5 1 or l 2(1) 5 1
(or both).

Recall thatVi( p; l 1, l 2) is the set of all playeri ’s payoffs sustainable by Nash equilibria.
We say that limv31 Vi( p; l 1(v), l 2(v)) 5 (21) i11v( p; 1) if for every n(v) [ Vi( p;
l 1(v), l 2(v)), n(v) converges to (21)i11v( p; 1) as v tends to 1. For the sake of
convenience, we omitv and writeVi( p; l 1, l 2) for Vi( p; l 1(v), l 2(v)).

Playeri can always play his optimal strategy ofG( p; l i) and guarantee himself the value
v( p; l i). Therefore,

min Vi~p; l1, l2! $ ~ 2 1! i11v~p; l i!, i 5 1, 2.
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We refer to these two inequalities as the individual rationality of the players.

3. A more patient informed player.

3.1. The limit payoffs are zero-sum. The main result of this section is:

THEOREM 1. Let (l1, l2) be a discounting path withl1(1) 5 1. If l1(v) $ l2(v) for every
v [ [0, 1], then

(a) lim supv31 V1( p; l 1, l 2) # v( p; l 2(1));
(b) If l 2(1) 5 1 then lim v31 V1( p; l 1, l 2) 5 v( p; 1);
(c) If l 2(1) 5 1 and (1 2 l1(v))/(1 2 l2(v)) is bounded away from zero, thenlim v31

V2( p; l 1, l 2) 5 2v( p; 1).
Theorem 1 states that if the informed player is relatively more patient, then he will receive,

in the limit of any Nash equilibrium, payoffs not more than the value of the repeated game
with the identical discount factorl2. If, in addition, player 2 also becomes extremely patient,
then the informed player receives equilibrium payoffs which are very close to the zero-sum
value of the infinitely repeatedundiscountedgame. The same will be true for the uninformed
player, if he is not significantly less patient than the informed one.

The proof of Theorem 1 requires a notation and a lemma. For anyl [ [0, 1), p [ P,
and a periods $ 1, if { at} is the sequence of stage-payoffs, we denote byNs(l; { at}) the
normalized future-payoff at stages. Formally,

Ns~l; $at%! 5 ~1 2 l! O
t5s

`

l t2sat.

It turns out thatN1(l 1; { at}) can be expressed as an affine combination ofNs(l 2; { at}),
as stated without a proof in the following lemma.

LEMMA 1.

N1~l1; $at%! 5 ~l1 2 l2!S1 2 l1

1 2 l2
D O

s52

`

l 1
s22Ns~l2; $at%! 1 S1 2 l1

1 2 l2
DN1~l2; $at%!.

Therefore, in case player 1 is more patient than player 2, one obtains,

COROLLARY 1. For l1 $ l2, N1(l1; { at}) is a convex combination of Ns(l2; { at}), s 5 1,
2, . . . .

PROOF OFTHEOREM 1. Let (s, t) be a Nash equilibrium ofG( p; l 1, l 2). Let at be player
1’s payoff at staget. Eachat is a random variable with a distribution induced bys andt. The
pair of payoffs corresponding to (s, t) is (E(N1(l 1; { at})), 2E(N1(l 2; { at}))), whereE[
is the expectation operator. For the sake of convenience, we omit {at} and write Ns[ for
Ns( z , { at}).

(a) By Lemma 1 and the bounded convergence theorem,

(1) E~N1~l1!! 5 ~l1 2 l2!S1 2 l1

1 2 l2
D O

s52

`

l 1
s22E~Ns~l2!! 1 S1 2 l1

1 2 l2
DE~N1~l2!!.

Recall that player 2’s stage payoffs are2at. Since player 2 can ignore his acquired
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information, he can ensure2v( p; l 2) at any stage. That is,2E(Ns(l 2)) $ 2v( p; l 2) at
any stages. Therefore,E(N1(l 1)) # v( p; l 2) and (a) is proved.

(b) Sincev( p; l 2) converges tov( p; 1),

lim sup
v31

max V1~p; l1, l2! # v~p; 1!.

On the other hand, from individual rationality, minV1( p; l 1, l 2) $ v( p; l 1), and
lim inf v31 min V1( p; l 1, l 2) $ lim v31 v( p; l 1) 5 v( p; 1). Hence, limv31 V1( p; l 1, l 2)
5 v( p; 1).

(c) LetK 5 lim inf v31 ((1 2 l 1)/(1 2 l 2)). By assumptionK . 0. As in (a),E(Ns(l 2))
# v( p; l 2) for stagess $ 2. Plugging in (1),

(2)

E~N1~l1!! # ~l1 2 l2!S1 2 l1

1 2 l2
D O

s52

`

l 1
s22v~p; l2! 1 S1 2 l1

1 2 l2
DE~N1~l2!!

5 S1 2
1 2 l1

1 2 l2
Dv~p; l2! 1 S1 2 l1

1 2 l2
DE~N1~l2!!.

Let { v n} be a sequence between 0 and 1 that converges to 1 and satisfies limvn((1
2 l 1)/(1 2 l 2)) E(N1(l 2)) 5 lim inf v31 ((1 2 l 1)/(1 2 l 2)) E(N1(l 2)). Taking lim inf
of both sides of (2) and using individual rationality of player 1 one obtains,

v~p; 1! # lim inf
v31

E~N1~l1!! # lim inf
vn

E~N1~l1!!

5 lim inf
vn

S1 2
1 2 l1

1 2 l2
Dv~p; l2! 1 lim

vn

S1 2 l1

1 2 l2
DE~N1~l2!!

5 lim inf
vn

S1 2
1 2 l1

1 2 l2
Dv~p; l2! 1 lim inf

v31
S1 2 l1

1 2 l2
DE~N1~l2!!

# lim sup
v31

S1 2
1 2 l1

1 2 l2
Dv~p; l2! 1 lim inf

v31
S1 2 l1

1 2 l2
DE~N1~l2!!

# ~1 2 K!v~p; 1! 1 K lim sup
v31

E~N1~l2!!.

Thus, lim supv31 E(N1(l 2)) $ v( p; 1). The individual rationality of player 2 now implies
the desired. h

Theorem 1 has an application to the comparison of repeated games where players’ discount
factors remain fixed, but the time lap between consecutive stages converges to zero. An
equivalent way to say that the frequency of interactions grows to infinity is to say that the
discount factors converge to 1 along a discounting path where (ln(l 1))/(ln(l 2)) stays
constant. Thus, if player 1 is more patient and the interactions become infinitely frequent,
then (ln(l 1))/(ln(l 2)) is a constant greater than 1 and by (b) and (c) of Theorem 1, the
equilibrium payoffs converge to the value of the undiscounted game.

3.2 The impact of the speed of convergence.The proof of Theorem 1 suggests that
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the speed of convergence ofV1( p; l 1, l 2) to the valuev( p; 1), depends on the speed of
convergence ofv( p; l) to v( p; 1), asl tends to 1. If this speed is quick enough relative to
(1 2 l 2)/(1 2 l 1), thenV2( p; l 1, l 2) converges to2v( p; 1), because the lower and upper
bounds of the elements inV2( p; l 1, l 2) become close.

DenoteF( p; l) 5 v( p; l) 2 v( p; 1). Thus, liml31 F( p; l) 5 0 and, moreover, for
any (p, l) [ P 3 [0, 1], F( p; l) $ 0 (see Mertens, Sorin, and Zamir 1994).

THEOREM 2. Let (l1, l2) be a discounting path withl1(v) $ l2(v) for everyv [ [0, 1],
wherel2(v)3 1. Suppose thatlim v31((1 2 l2)/(1 2 l1)) F (p; l2) 5 0. Then,lim v31 V2(p;
l1, l2) 5 2v(p; 1).

PROOF. Let (s, t) be an arbitrary Nash equilibrium in the gameG( p; l 1, l 2). By
individual rationality, Theorem 1(a), and the definition ofF( p; l), one obtains,

(a) v( p; 1) # v( p; l 1) # E(N1(l 1));
(b) E(Ns(l 1)) # v( p; l 2) 5 v( p; 1) 1 F( p; l 2), for any s $ 1.
From Lemma 1 and Corollary 1,

E~N1~l1!! 2 E~N1~l2!! 5 ~l2 2 l1!S1 2 l2

1 2 l1
D O

s52

`

l 2
s22@E~N1~l1!! 2 E~Ns~l1!!#

(by (a) and (b))

# ~l2 2 l1!S1 2 l2

1 2 l1
D O

s52

`

l 2
s22@v~p; 1! 2 ~v~p; 1! 1 F~p; l2!!#

5 ~l1 2 l2!S1 2 l2

1 2 l1
D O

s52

`

l 2
s22F~p; l2! 5

l1 2 l2

1 2 l1
F~p; l2!

5 S1 2 l2

1 2 l1
2 1DF~p; l2!O¡

v3 1

0.

Therefore, lim supv31 max V2 ( p; l 1, l 2) # 2lim v31 V1( p; l 1, l 2) 5 2v( p; 1). On
the other hand, from individual rationality lim supv31 max V2( p; l 1, l 2) $ 2lim v31 v( p;
l 2) 5 2v( p; 1). We conclude that limv31 V2( p; l 1, l 2) 5 v( p; 1). h

We will show, in Example 2, that the condition of Theorem 2 cannot be improved upon.

REMARK 1. If the information structure is standard (after each stage the signals are the
players’ actions), then the speed of convergence is bounded as follows.F( p; l) # C
=(1 2 l)/(1 1 l) ¥ =pk(1 2 pk), wherepk is the initial probability of statek andC is
a constant (see Mertens, Sorin, and Zamir 1994).

DenotingC*( l) 5 (C/=1 1 l) ¥ =pk(1 2 pk), we see that (C/=2) ¥ =pk(1 2 pk)
# C*( l) # C ¥ =pk(1 2 pk) and ((1 2 l 2)/(1 2 l 1)) F ( p; l 2) # C*( l 2) (1
2 l 2)

3/ 2/(1 2 l 1). Hence, for standard information structure, Theorem 2 states that if (1
2 l 2)

3/ 2/(1 2 l 1) converges to zero, then the asymptotic equilibrium payoffs are necessarily
zero-sum. This implies, for instance, that for everyc , 1, if l 1 5 l 2

c, then all equilibrium
payoffs converge to zero-sum payoffs.

3.3 An example with non zero-sum equilibrium payoffs. In the preceding section
sufficient conditions were given for the convergence ofV1( p; l 1, l 2) andV2( p; l 1, l 2) to
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the zero-sum value. In this section we give an example of discounting paths which do not
satisfy the conditions of Theorems 1 and 2 and of Nash equilibrium payoffs that do not
converge to the zero-sum value.

The idea of the following example is that the impatient player, here player 2, can force his
opponent to play for a relatively long duration one of his “favorite” actions, starting at the
beginning of the game. In case players’ discount factors are sufficiently singular (in the sense
that they violate the conditions of Theorems 1 and 2), this duration may be chosen so that the
corresponding payoffs are significant to player 2 while they are practically negligible for
player 1. Player 1 is forced to give up payoffs at the beginning of the game but is
compensated later. Thus, he plays a player 2’s “favorite” action in early stages without
violating his own individual rationality: all his continuation payoffs are slightly higher than
his individually rational level.

Player 2 can force player 1 to follow such a plan by introducing a punishing scheme, aimed
at reducing the payoffs of player 1 to his individual rational level in case of defection. Thus,
player 2 will be able to ensure himself a payoff strictly greater than the zero-sum value in
games that have the following two properties: (a) player 1 can play an action that guarantees
player 2 a payoff strictly higher than his individual rational level; and (b) player 1 can be
ensured a payoff slightly higher than his individual rational level so player 2 can effectively
punish him.

EXAMPLE 2. Suppose that there are two states of nature (i.e.,K 5 {1, 2}), and that the
distribution overK is p 5 (1

2,
1
2). The game matrices corresponding toK are:

A1 5 S 2 1 2 1 2 1
0 0 1

8

1 0 0
D A2 5 S 2 1 2 1 2 1

0 0 1
8

0 1 1
D .

Assume that the information structure is such that the players observe, beyond their own
action, only the payoffs received after each stage.

Denote player 1’s actions by {T, I , B} and player 2’s actions by {L, M, R}. Note that the
non-revealing mixed actions of player 1 are all the probability distributions over {T, I } and
so the value of the non-revealing game is 0. This implies thatv( p; 1) 5 0 (see Aumann and
Maschler 1995, Sorin 1980, Mertens, Sorin, and Zamir 1994).

When both players have an identical discount factor,l, an analogous equilibrium to that
introduced in Example 1 can be constructed. Namely,

Player 1: Always playT.
Player 2: Play L until 21 is detected. From then on, playM.
A similar calculation to that carried out in Example 1 shows that the value of the

identically discounted game is:v( p; l) 5 1
2 (1 2 l).

We will now deal with a more patient informed player. The play path of the strategies we
are about to present consists of an initial block ofn stages followed by an infinite number of
identical blocks containingk 1 2 stages each. In each stage of the first block, player 2 will
collect the payoff 1 (minus21). Sincen is chosen large enough relative tol2, player 2’s
overall payoff is close to 1. In the subsequent (k 1 2)-blocks, player 1 will receive
non-negative payoffs so as to make his overall payoff positive and, therefore, individually
rational.

During the construction we make sure that the continuation payoffs of player 1 are at least
his individually rational level plus his potential one-time gain from any deviation. Likewise,
player 2’s continuation payoffs should satisfy similar conditions.

Consider the following strategies, which depend on the parametersn and k to be
determined later.

The Master Plan. At the first n stagesplayer 1 playsT and player 2 playsL andM with
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probability of 1
2 each.From stage n1 1 and onboth play repeatedly the following block of

lengthk 1 2. Player 1 playsI all the time, while player 2 playsR at the first two stages and
at the lastk stages he playsL andM with probability of 1

2 each.
Thus, the play path of these strategies is:

ST,
1

2
pL 1

1

2
pMD ,. . . ,ST,

1

2
pL 1

1

2
pMD , ~I , R!, ~I , R!,

n

S I ,
1

2
pL 1

1

2
pMD ,. . . ,S I ,

1

2
pL 1

1

2
pMD , ~I , R!, ~I , R!,

k

S I ,
1

2
pL 1

1

2
pMD ,. . . ,S I ,

1

2
pL 1

1

2
pMD , . . .

k

and the corresponding sequence of player 1’s payoffs is:

21,. . . , 21,
1

8
,
1

8
, 0,. . . , 0,

1

8
,
1

8
, 0,. . . , 0

1

8
,
1

8
, 0,. . . , 0, . . . .

n k k k

If a defection is detected at staget (i.e., the payoff observed at staget does not equal to the
tth element of the above sequence), the players start playing the following punishment plan.

The punishment plan. Player 1 playsB forever. Player 2 playsM until the payoff 1 is
received and from then on he playsL.

Note that in case of no defection, player 1 plays a completely non-revealing strategy.
Moreover, he receives an overall payoff slightly above zero, while player 2 receives
almost 1.

The best opportunity of player 2 to deviate is immediately after the initial block. We will
choose the parameterk in a way that will render such a deviation unprofitable. Formally,k
should satisfy the following inequality.

1 2 l2

1 2 l 2
k12 F2

1

8
1 l2S2

1

8D 1 l 2
2
1 2 l 2

k

1 2 l2
0G $ ~1 2 l2!0 1 ~1 2 l2!l2S2

1

2D 1 l 2
20.

The left side is the continuation payoff according to the prescribed master plan. On the
right side, the (12 l 2)0 term is the evaluation of the payoff 0 (due to deviation) at period
n 1 1. The term (12 l 2)l 2(2

1
2) is the evaluation of 0 and21 with probability 1

2 each
received at the post deviation stage (due to the punishment plan). Finally, the terml 2

20 is the
evaluation of the stream of zeros, determined by the punishment plan.

The above inequality holds if and only if ((11 l 2)/(1 2 l 2
k12)) 1

8 # l 2
1
2, which is

equivalent to

(3) k $
ln~3l2 2 1! 2 ln~4!

ln~l2!
2 3.
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The parametern will be chosen large enough to make the first block substantial with
respect tol2. For instance, we can choosen so that the weight of the tail after thenth stage
is less than 12 l 2. In other words, we can choosen satisfying 12 l 2

n . l 2, which is
equivalent to

(4) n $
ln~1 2 l2!

ln~l2!
.

To summarize, condition (3) guarantees that any deviation of player 2 is unprofitable.
Condition (4) makes player 2’s payoffs close to21.

We can now turn to the selection of the other parameters that ensure that any deviation of
player 1 is also unprofitable. The parametersn and k impose two conditions thatl1 must
satisfy:

(a) In order to assure that player 1 has no incentive to defect right at the beginning of the
game,l1 should be large enough, relative to the length of the first block,n, so as to make
this block negligible for player 1’s payoffs. More precisely, this means,

~1 2 l1!
1

2
1 l10 # 2~1 2 l 1

n! 1 l 1
n F 1 2 l1

1 2 l 1
k12 S1

8
1 l1

1

8
1 l 1

2
1 2 l 1

k

1 2 l1
0DG

The left side is the evaluation of the best available deviation for player 1. The right side is
the payoff generated by the master plan (n times21, 2 times1

8, k times 0, . . .).
This inequality reduces to:

(5) l 1
n $

~~3 2 l1!/2!

~1 1 ~~1 2 l 1
2!/~1 2 l 1

k12!! 1
8!

.

(b) In order to assure that player 1 has no incentive to deviate during a (k 1 2)-block,l1

must be large enough. We deal with two possible deviations separately.
(b1) Player 1 will not benefit from defecting during the first or second stages of each (k

1 2)-block if and only if

1 2 l1

1 2 l 1
k12 F1

8
1 l1

1

8
1 l 1

2
1 2 l 1

k

1 2 l1
0G $ ~1 2 l1!

1

2
1 l10.

The left side is the continuation payoff, according to the prescribed strategies, at the
beginning of any (k 1 2) block. The right side is the sum of the one-shot gain from deviation
(i.e., 1

2) and the evaluation of the zeros thereafter. This reduces to:

(6) l 1
k12 $ 1 2

1 1 l1

4
.

(b2) Player 1 will not benefit from defecting after the second stage of each (k 1 2)-block
if and only if

l 1
k F 1 2 l1

1 2 l 1
k12 S1

8
1 l 1

2
1 2 l 1

k

1 2 l1
0DG $ ~1 2 l1!

1

2
1 l10.

This reduces to
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(7) l 1
k $

4~1 2 l 1
k12!

1 1 l1
.

To summarize, if the parameters are chosen in a way that satisfies inequalities (3)–(7), then
the strategies defined form an equilibrium. It turns out that for everye . 0, one can choose
n, k andl 1 $ 1 2 (1 2 l 2)

21e so that (3)–(7) are all satisfied, even whenl2 is fairly close
to 1. In casel2 is bounded away from 1 and onlyl1 is converging to 1, choosingn andk that
satisfy (3)–(7) is trivial.

REMARK 2. In Example 2,F( p; l) 5 v( p; l) 2 v( p; 1) 5 1
2 (1 2 l). Thus, the

condition of Theorem 2 can be written as

(8)
~1 2 l2!

2

~1 2 l1!
3 0.

Example 2 attests to the fact that the condition of Theorem 2, which ensures asymptotic
zero-sum payoff, cannot be replaced by any weaker condition of the form limv31((1
2 l 2)/(1 2 l 1)) c( p; l 2) 5 0, wherec( p; l 2)/F( p; l 2)(1 2 l 2)

e 3 1 for some fixed
e . 0. This is so because the discounting pathl 1 5 1 2 (1 2 l 2)

21e does not satisfy (8)
for everye . 0 and with an appropriate choice ofn andk, it satisfies inequalities (3)–(7).
Therefore, it entails anon zero-sum asymptotic equilibrium payoffs.

By construction, lim sup maxV2(1
2; l 1, l 2) 5 1 . 2v(1

2; 1) 5 0. In particular,V2( p; l 1,
l 2) does not converge to the set2{ v( p; 1)}. Sincel 1 . l 2, by Theorem 1, limV1( p; l 1,
l 2) 5 v( p; 1) 5 0. We therefore obtain

PROPOSITION1. There exists a game in which

lim sup
v31

$n 1 1 n 2|n i [ Vi~p; l1, l2!% 5 v~p; 1! 1 m,

where m is the maximal player 2’s payoff in the game.
Notice that lim supV1( p; l 1, l 2) 5 v( p; 1) and that lim supV2( p; l 1, l 2) # m.

Therefore, the summation of the players’ payoffs, as indicated in Proposition 1, cannot be
greater.

4. A more patient uninformed player. We turn now to the case in which the
discounting path is such that the uninformed player, player 2, is more patient. The first result
is valid for any information structure.

PROPOSITION2. Let (l1, l2) be a discounting path. Ifl1(v) # l2(v) for everyv [ [0, 1],
then lim v31((1 2 l1(v))/(1 2 l2(v))) 5 1 implies

lim
v31

V1~p; l1, l2! 5 2lim
v31

V2~p; l1, l2! 5 v~p; 1!.

In other words, if the players grow infinitely patient in a similar manner, then the game
becomes almost completely competitive. In particular, the payoff of any Nash equilibrium
converges to the zero-sum value.

PROOF OFPROPOSITION2. Using the notation introduced in the proof of Theorem 1 and the
representation established in Lemma 1, we obtain that the coefficient ofN1(l 2) in the
representation ofN1(l 1), which is (1 2 l 1)/(1 2 l 2) (see Lemma 1), converges to 1.

Proposition 2 follows now from the individual rationality of both players.h
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In order to get more symmetric results than those achieved when the informed player is
more patient, we use the following observation made in Megiddo (1980) (see also Mertens,
Sorin, and Zamir 1994).

PROPOSITION3. In games with incomplete information on one side where the uninformed
player, player 2, is told his payoff at each stage, v(p; 1) is linear over P.

When player 2 observes his own payoffs we obtain,

THEOREM 3. In games where at each stage player1 is told the actions taken by both
players(standard information) and player2 knows his own action and payoff, if (l1, l2) is
a discounting path, wherel1(v) # l2(v) for everyv 5 [0, 1], and l1(1) 5 1, then

(a) limv31 V2( p; l 1, l 2) 5 2v( p; 1).
(b) If (1 2 l 2(v))/(1 2 l 1(v)) is bounded away from zero, thenlim v31 V1( p; l 1, l 2)

5 v( p; 1).

PROOF. The proof resembles the proof of Theorem 1. (a) Let (s, t) be a Nash equilibrium
of G( p; l 1, l 2). At any stages $ 1, the induced posterior probabilitiesq1

s, q2
s, . . . , qns

s ,
corresponding to historiesh1

s, . . . , hns

s , can be calculated by player 1 since he observes the
actions taken by player 2 at each stage and can thus deduce player 2’s signals. From
individual rationality of player 1,E(Ns(l 1)) $ ¥ j51

ns Prob (hj
s)v(qj

s; l 1), for all s $ 2, where
Prob[ is the probability induced by (s, t). Using Lemma 1, we get an analogue of (1) for
player 2. Plugging in the above set of inequalities we get,

E~N1~l2!! $ ~l1 2 l2!S1 2 l2

1 2 l1
D O

s52

`

l 1
s22 O

j51

ns

Prob~hj
s!v~qj

s; l1! 1 S1 2 l2

1 2 l1
D v~p; l1!.

As v( p; l 1) converges tov( p; 1) uniformly onP, for everye . 0 and sufficiently large
l1

E~N1~l2!! $ ~l1 2 l2!S1 2 l2

1 2 l1
D O

s52

`

l 1
s22 O

j51

ns

Prob~hj
s!~v~qj

s; 1! 2 e!

1 S1 2 l2

1 2 l1
D ~v~p; 1! 2 e!.

By Corollary 1 and Proposition 3, the right hand side equalsv( p; 1) 2 e. Combined with
individual rationality of player 2, this implies (a).

(b) Identical to the proof of Theorem 1(c).h

4.2 An example with non zero-sum equilibrium payoffs. In cases where player 2,
the uninformed player, is more patient than the informed player, he can define an initial short
learning phase. In this phase player 2 will use actions that maximize his learning. When
players’ discount factors are singular enough, this phase may be chosen to be significant for
player 1 and insignificant for player 2. As a result, player 1 will be forced to reveal
information. If the learning phase is long enough for player 1, the game played after the
learning phase is similar to a complete information game. This means that player 2’s payoff
after the learning phase is very close to his individually rational level in the complete
information game, which is typically higher than that of the incomplete information game. In
short, player 1 will use his information at the beginning of the game and player 2 will use the
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revealed information afterwards. In so doing, both players may receive strictly more than the
value of the undiscounted game. This intuition is the basis for the following example.

EXAMPLE 3. Consider the game in which the state space isK 5 {1, 2}, the distribution
over K is p 5 (1

2,
1
2), and the payoffs are given by the following matrices.

A1 5 S 1 0 4
0 0 4 D A2 5 S 0 0 4

0 1 4 D
and the information structure is defined by the common signaling matrix

S a a c
b b c D .

Let player 1’s set of actions be {T, B} and player 2’s set of actions be {L, M, R}. Suppose
that the players are informed after every stage of their own action and of the common signal.
The information structure is such that player 1 learns, after each stage whether player 2 has
playedR or one out of {L, M} and can never differentiate betweenL andM. Player 2, on
the other hand, can perfectly monitor player 1’s actions only if he playsL or M.

As the right column is dominated in both game matrices, it is easy to see that the value of
the non-revealing game, for every distributionp 5 ( p, 1 2 p) over K, is p(1 2 p) and
hencev( p; 1) 5 p(1 2 p). In our particular case (i.e.,p 5 1

2), v( p; 1) 5 1
4 (see Mertens,

Sorin and Zamir 1994).

REMARK 3. (a) Any Nash equilibrium in which player 2 uses with positive probability
only actions in {L, M}, depends only onl1. That is,G( p; l 1, l 2) depends only onl1. The
reason is that as long as player 2 plays onlyL or M, player 1 collects no information about
the actions of player 2. Thus, the best response of player 2, regardless of his discount factor,
is to maximize the expected payoff of the next period. It follows that,V1( p; l 1, l 2) 5 v( p;
l 1) for everyp, l 1 andl 2.

(b) It is easily verified that for everye . 0, l 1 { [0, 1), andp if player 1 uses an optimal
strategy inG( p; l 1), then there existsS [ N such that for every stages $ Sand every state
k, E(|p(s) 2 1{k 51} |) , e, wherep(s) is the posterior probability of the state 1 at times and
1 is the characteristic function. That is, an optimal strategy of player 1 is asymptotically
revealing the true state. In fact, this follows from the representation ofv( p; l) introduced in
Mayberry (1967). His general formula implies that in our case whenp $ 1

2,

(9) v~p; l! 5 max
0#x#12p

Slx 1 ~1 2 l!S ~1 2 p!vS1 2 p 2 x

1 2 p
; lD 1 pvS x

p
; lDDD

(see Mertens, Sorin and Zamir 1994, p. 308).
The best completely non-revealing strategy atp is to play with probabilityp the top action

(in both A1 and A2). This action corresponds tox 5 p(1 2 p). By differentiating the
argument in the right side of (9),lx 1 (1 2 l)((1 2 p)v((1 2 p 2 x)/(1 2 p); l)
1 pv( x/p; l)), with respect tox, one can see that there are better choices ofx than the one
corresponding to the non-revealing strategy,p(1 2 p). It means that the best action of player
1 at the first stage of the game with anyp , 1 is partially revealing. It follows that the
posterior probabilities cannot converge to any 0, p , 1. They converge top 5 1 in case
the realized game isA1 and top 5 0 when the realized the game isA2.

For a fixedv [ [0, 1), consider the following strategies for both players. The parameter
n will be determined later.

The Master Plan.At the first n stagesplayer 1 playsT and player 2 playsR. From stage
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n 1 1 and oneach player plays an optimal strategy inG(1
2; l 1). Note that from stagen 1 1

and on player 2 uses only the actionsL andM.
The Punishment Phase.If a defection is detected (by player 1) during the firstn stages

of the game, player 1 will playT from then on (completely non-revealing) and the average
payments from that stage on will be1

4.
Fix an e . 0. We choosen in a way that ensures that the firstn stages of the game, in

which the payoff is 4, have a significant effect on the total payoff of player 1. Precisely, we
choosen so thatl 1

n , e.
Using part (b) of Remark 3, we may chooseS [ N such that for every stages $ S and

every statek, E(|p(s) 2 1{k 51} |) , e, wherep(s) is the posterior probability of state 1 after
stages. We can now choosel2 large enough to satisfy 4(12 l 2

n1S) , e. Thus, the initial
block of n stages affects player 2’s overall payoffs by less than ane. Clearly, forl2 large
enough, player 2 will have no incentive to defect. We conclude that the above strategies
constitute a Nash equilibrium inG(1

2; l 1, l 2) for e small enough.
Player 1’s payoff corresponding to this Nash equilibrium is greater than (12 e)4, while

player 2’s payoff is greater than24e 2 e 5 25e. Thus,both players do better than the
zero-sum value.

We complete this section by stating:

PROPOSITION4. There exists a game in which

lim sup
v31

$n 1 1 n 2|n i [ Vi~p; l1, l2!, i 5 1, 2% 5 M 1 m,

where M and m are the maximal payoffs of players1 and 2, respectively.

6. Concluding comments.

6.1 A non zero-sum limit with standard information. Example 2 may be modified
to the case of standard information (instead of observable payoffs) by replacing the payoff
matrices with the following:

A1 5 1
2 1 2 1 2 1 2 1 2 1
1 0 1/2 1/4 1/4
1 0 1 1 0
0 0 1 0 0

2
A2 5 1

2 1 2 1 2 1 2 1 2 1
0 1 1/2 1/4 1/4
0 0 1 0 0
0 1 1 0 1

2
The three left most columns are dominated in the non-revealing game (i.e., the mixture of the
two matrices). Using similar calculations to those introduced in the beginning of Example 3,
it is easily seen thatv( p; 1) 5 1

4.
The sequence of payoffs corresponding to an equilibrium, similar to the completely

non-revealing one introduced in Example 2, is

21, . . . , 21,
1

2
,

1

4
, . . . ,

1

4
,

1

2
,

1

4
, . . . ,

1

4
,

1

2
,

1

4
, . . . ,

1

4
,

1

2
,

1

4
, . . . ,

1

4
, . . . .

n k k k k
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Defection leads player 1 to use his two bottom actions, and thereby reducing player 2’s payoffs
to at most21

4. Player 2 punishes player 1 in a case of deviation by using his two rightmost actions.
This guarantees that player 1’s payoff is close to1

4 for discount factors large enough.
Just like in Example 2, an appropriate choice ofn, k, and a discounting path (l 1, l 2)

results in lim supv31 max V2(1
2; l 1, l 2) 5 1 . 2v(1

2; 1) 5 21
4. Thus,V2( p; l 1, l 2) does

not necessarily converge to the singleton {2v( p; 1)}.

6.2 More on observable payoffs. In Example 2 the values of both matrices were
identical and the strategies used were non-revealing. However, when val(Ak) are not all
identical, a completely non-revealing Nash equilibrium, i.e., one in which the posterior at
each stage is equal to the initial prior with probability 1, cannot be constructed. This is so
because a completely non-revealing equilibrium must satisfyE(Ns(l 1)) $ max val(Ak) for
everys (otherwise, player 1 would have an incentive to defect at some stages and in some
statek). On the other hand, for any equilibriumE(Ns(l 2)) # v( p; l 2) 3v31v( p; 1) 5 ¥ k

pk val (Ak) , max val(Ak). The last strict inequality holds because in the case of observable
payoffs, v( p; 1) 5 ¥ kp

k val(Ak) (see Proposition 3). Using the representation given in
Lemma 1 forl 1 $ l 2 andl2 large enough, we get a contradiction.

The authors do not know whether it is possible, in the case where all the values (of the state
matrices) are distinct and when the payoffs are observable, to construct an example with
lim supv31 max V2( p; l 1, l 2) . 2v( p; 1).

6.3 On the sequence {v( p; l)}. Supposel1 $ l2 are two discount factors. If (s, t) is an
arbitrary Nash equilibrium inG(p; l1, l2), thenv(p; l1) # E(N1(l1)) # v(p; l2). In particular,
for all p, the sequence {v(p; l)} is monotonically non-increasing with respect tol.
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