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Abstract

Most doctors in the NRMP match with one of their most-preferred internship pro-

grams. However, surveys indicate doctors’ preferences are similar, suggesting a puzzle:

how can so many doctors match with their top choices when positions are scarce? We

provide one possible explanation. We show that the patterns in the NRMP data may be

an artifact of the interview process that precedes the match. Our study highlights the

importance of understanding market interactions occurring before and after a matching

clearinghouse. It casts doubts on analyses of clearinghouses that take reported preferences

at face value.
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1 Introduction

The National Resident Matching Program (NRMP) has matched millions of doc-

tors to residency programs across the United States. In 2020 alone, 45,000 active

applicants attempted to match with just over 37,000 positions. Match results re-

ported by the NRMP for 2020 suggest comforting news for doctors: 46% of freshly-

minted MDs from US schools were matched to their first-ranked choice, while 71%

were matched to one of their top-three choices. The 2020 figures are by no means

an aberration. The fraction of applicants matched to their first-ranked choice has

been at least as high over the past two decades. We suggest these figures should

not be taken at face value. In particular, we show that interactions outside of the

main match—the interview process that precedes it—may be at least as important

as the match itself.

Why should a large fraction of doctors matching to their first-ranked residency

be surprising? The algorithm governing the NRMP match implements a stable

matching over reported preferences. If applicants report similar preferences, only

a few applicants can get their most-preferred option. For example, suppose 100

prospective residents are matched to 100 positions. Common preferences on both

sides (an assortative market) yield an outcome in which only 1% are matched

to their first-ranked program. As we show, even a small common component in

doctors’ preferences implies relatively few matches to top-ranked hospitals.

One explanation for the NRMP outcomes is that applicants’ preferences are

diametrically opposed, with only a handful ranking each position as their top out-

come. This stands in the face of survey data and estimation results suggesting the

importance of preference commonalities (Rees-Jones, 2018; Agarwal, 2015). An-

other explanation might be that preferences are similar across participants, but

that each doctor and hospital consider only their top-k partners acceptable, as in

Immorlica and Mahdian (2015). Matched participants would then have to receive

a top-k outcome. As we demonstrate, this explanation too has shortcomings. First,

it does not explain the relative prevalence of matches with first-ranked partners.

Second, for k small enough to generate an effect, many applicants would be un-

matched (see Arnosti, 2015; Beyhaghi and Tardos, 2018; Lee, 2016).

We propose another story. In the months preceding the centralized match, ap-

plicants submit their biographical and academic records, personal statements, and
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letters of recommendation to hospitals.1 From these applications, the hospitals se-

lect a group to interview. The process used to determine who interviews with

whom is decentralized with two important features. First, applications and inter-

views are costly—both market sides have limited capacity. Second, hospitals and

doctors submit rankings to the NRMP only for those they interviewed with.2

We assume that hospitals’ and applicants’ preferences are decomposable into

common and idiosyncratic components. For hospitals, the common component

may reflect doctors’ academic performance, test scores, and the strength of their

letters (Agarwal, 2015). For doctors, it may reflect hospital rankings, quality of

life in the local area, etc. In contrast, the idiosyncratic component reflects match-

specific values. Using this model of preferences we consider the pre-match interview-

selection process. Each candidate has a limit on the number of interviews they can

attend, k, while each hospital has a maximum number of interview slots they can

offer, k′. The decentralized interview process is then modeled as a stable many-to-

many matching under the (k,k′) capacity constraints. In the centralized matching

stage, participants report rankings over interview partners only—their “interview-

truncated” preference.

Truncation induced by interviewing necessarily narrows agents’ original pref-

erences. However, unlike the truncation to the top-k, it is endogenous. Partici-

pants’ preferences are linked through the stability of interviews, so a large fraction

of prospective doctors still end up matched—indeed, in our simulations, partici-

pants often end up with the same exact partner as in the centralized match with

untruncated preferences. Moreover, the reported ranks for match outcomes are

greatly inflated.

The presence of a common component in the preferences of prospective res-

idents and hospitals is crucial for this conclusion. We show that with sufficient

disagreement in doctors’ preferences, interviews may cause matched partners’ re-

ported rank to go down, not up. While perfect agreement among doctors over hos-

pital rankings will clearly lead to inflated rankings for matched programs under

interview truncation, this obviously represents an extreme.3 Our main theoret-

1See https://www.nrmp.org/applying-interviewing-residency-programs/
2The 2019 NRMP Applicant Survey (available from nrmp.org) provides median respondent data

across four applicant-types and 21 medical-specialties. Of the 84 medians reported, 63 have per-
fectly coincident numbers for interviews attended and programs ranked, where 81 are ±1.

3A related idea appears in Beyhaghi and Tardos (2018), who show that interviews may increase
the size of a match. See also Kadam (2015).
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(a) First-ranked outcome (b) Unique stable partner

Figure 1: Simulated matched-resident outcomes (NRMP scale)

Note: Simulations under both DA and Int-DA algorithms are used to assess outcomes across many
market sizesN . A composite response across 35,704 positions is then imputed across the speciality
sub-markets (ranging in size from 22–9,127 positions) listed in the 2020 NRMP report (Table 13).

ical finding is that, in large markets, an arbitrarily weak common-component is

sufficient for interviews to generate the pattern of high-reported ranks for match

partners.

As our most-general result is asymptotic, we complement it with an array of

simulations at more-moderate market sizes. Using the listed positions for the sub-

markets that residents match within (anesthesiology through vascular surgery),

we use our simulations to infer an aggregate-level outcome at the NRMP scale.

We illustrate the results in Figure 1, serving both as a guide for the puzzle that

motivates us, and the paper’s main result.

Figure 1 illustrates two measures for which data is available on NRMP out-

comes: (a) The fraction of matched residents getting the hospital at the very top

of their rank-order list; (b) Uniqueness, measured as the fraction of doctors with

a unique stable match partner given the submitted rank-order lists. The figure

illustrates simulated outcomes under both deferred acceptance with the full pref-

erences (the region labeled DA) and interview-truncation (the region labeled Int-
DA). In both figures we sweep across an array of possible preferences that modify

the strength of the common component. On the horizontal axis we indicate the

effect of increasing the common component weight within doctor’s preferences,
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λD (with a residual weight 1 −λD on the idiosyncratic component). The width of

each region then indicates the range in effect as we shift the common-component

weight in hospital’s preferences, λH (where an arrow indicates the direction).

As mentioned, across two decades of annual NRMP matches, approximately

one half of all matched residents obtain their first-ranked outcome.4 Figure 1(A)

illustrates that, while the high fraction matched to their first-ranked outcome is

possible under deferred acceptance, it requires a very particular form of prefer-

ence: hospitals with a heavy weight on the common-value (λH close to one) and

doctors with entirely idiosyncratic preferences (λD close to zero). For all other

preferences, our simulations indicate the fraction of first-ranked matches is con-

siderably lower. In particular, this statistic is close to zero whenever doctors place

substantial weight on the common preference component.

While hospitals having a strong common component is consistent with NRMP

survey data, the requirement that doctors’ preferences are almost completely id-

iosyncratic contradicts ample survey evidence.5 Simulation results under interview-

truncation in the region labeled Int-DA illustrate our explanation. Our model

of interviews leads to a near-opposite result to deferred acceptance: Except for

a very particular and empirically unlikely preference—hospitals (doctors) with a

small (large) common-value component—the NRMP-scale simulations lead to an

approximately half of the residents obtaining their first-ranked outcome.

In Figure 1(B) we focus on another documented feature of the NRMP rank-

ings: almost every doctor has a unique stable match partner. Using proprietary

rank-order data from the NRMP, Roth and Peranson document small cores, where

doctor-proposing and hospital-proposing deferred acceptance produce the same

partner for 99.9% of the residents. Our simulation results in Figure 1(B) indicate

the type of preferences that can generate this level of uniqueness within DA. The

result that almost every participant has a unique stable match partner is a generic

feature across all preference weights under the interview-truncated rankings (this

is the close-to-degenerate region labeled at the very top of the figure). In contrast,

this empirical feature is only possible under the full ranking when one of the two

4See Figure B.1 in Online Appendix B for the time-series.
5From the NRMP Director’s Survey, hospitals clearly place substantial weight on common fea-

tures: test scores, recommendation letters, etc. However, the resident survey has common-value
components (“reputation of program,” having an “academic medical center program,” as well as
quality of the residents, faculty, and educational curriculum) cited at similar frequencies to poten-
tially idiosyncratic ones (“perceived goodness of fit") as the reasons for their ranking of programs.
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sides’ preferences are primarily driven by a common component.

The idea that doctors’ reports in the residency match may not reflect true

preferences is certainly present in other work. Hassidim, Marciano, Romm, and

Shorrer (2017) survey evidence of misreports in the NRMP, suggesting four possi-

ble explanations: proposers’ failure to identify the dominant strategy, mistrust in

the mechanism, non-classical utility, and self-selection. The last of these is closest

to ours. In this vein, Chen and Pereyra (2019) consider school-choice problems

where students “self select” by only ranking schools they believe will plausibly

admit them, showing evidence for this self-selection in Mexican high-school ap-

plications. While doctors and hospitals ranking only those they interview with

is a manifestation of self-selection, our theoretical analysis offers a constructive

process, shedding light on its underpinnings and impacts.6

Our results have important implications for the NRMP, and the matching lit-

erature more broadly. Doctors participating in the deferred-acceptance algorithm

underlying the match have incentives to truthfully report preferences (Roth and

Peranson, 1999). Traditionally, economists have viewed the NRMP as an ideal case-

study in strategy-proof design. Our findings make clear that because reported

preferences in the NRMP are filtered through the interview stage, they should be

interpreted with caution. In particular, reported high-rank matches cannot be

read literally, and any conclusions drawn about welfare using estimated prefer-

ences from the match itself are suspect. This message is particularly stark given

that our paper ignores strategic effects at the interview stage.7 That said, our ap-

proach also indicates some constructive ways forward and suggests the potential

importance of accounting for interactions preceding centralized clearinghouses.

6Lee and Schwarz (2017) also consider an interview process that precedes a centralized match.
In their setting, workers are fully informed of their preferences, while firms view workers symmet-
rically at the outset and use costly interviews to infer their own preferences. In the NRMP con-
text, Rees-Jones (2018) uses surveys to illustrate doctors’ significant “misreporting” in the match.
Rees-Jones and Skowronek (2018) use an online experiment with post-match residents, where 23%
misrepresent their preferences in an incentivized NRMP-like matching task.

7See Beyhaghi, Saban, and Tardos (2017) for an analysis of some strategic implications of in-
terviews and Manjunath and Morrill (2021) for the effects of changes in the interviewing costs on
doctors’ welfare.
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2 The Model

Our model is a variant of the standard two-sided matching model (see, for exam-

ple, Roth and Sotomayor, 1990), with an added interview stage.

2.1 Basic Definitions

A market is a triple (H,D,U ), where: H is a finite set of hospitals; D is a finite set of

doctors; and U = ((ud)d∈D , (uh)h∈H ) is a utility function profile (with ud :H ∪{d} → R
and uh :D ∪ {h} → R for each d and h).

A utility ua induces an ordinal preference �a over the relevant set of alterna-

tives, where we assume throughout that the resulting ordinal preferences are strict.
The rank-order of b in ua is one plus the number of b′ with ua(b′) > ua(b)—a lower

rank-order indicates a better ordinal outcome/higher ranking. In particular, agent

a’s most-preferred match partner has rank-order 1. An agent b is unacceptable for

a if ua(a) > ua(b).

A matching is a function µ :H∪D→H∪D with the properties that µ(h) ∈D∪{h},
µ(d) ∈H∪{d}, and µ(d) = h iff µ(h) = d. A matching µ is stable for a market (H,D,U )

if ua(µ(a)) ≥ ua(a) for all a ∈D∪H , and there is no (d,h) ∈D×H with ud(h) > ud(µ(d))

and uh(d) > uh(µ(h)).

A many-to-many matching is a function µ : H ∪D → 2H∪D with the properties

that µ(d) ⊆ H , µ(h) ⊆ D, and h ∈ µ(d) iff d ∈ µ(h). When an agent a is unassigned,

we have µ(a) = ∅. Given a pair of positive integers (k,k′), a many-to-many matching

µ is pairwise stable for (k,k′) if

•
∣∣∣µ(d)

∣∣∣ ≤ k and there is no h ∈ µ(d) with ud(h) < ud(d);

•
∣∣∣µ(h)

∣∣∣ ≤ k′ and there is no d ∈ µ(h) with uh(d) < uh(h);

• There is no (h,d) such that d < µ(h) and any one of the following:

– ud(h) > ud(h′) and uh(d) > uh(d′) for some (h′,d′) ∈ µ(d)×µ(h);

– ud(h) > ud(h′), uh(d) > uh(h), and
∣∣∣µ(h)

∣∣∣ < k′ for some h′ ∈ µ(d);

– ud(h) > ud(d), uh(d) > uh(d′), and
∣∣∣µ(d)

∣∣∣ < k for some d′ ∈ µ(h).
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2.2 Interview Schedules

In our model, doctors and hospitals first schedule interviews and then participate

in the match.

An interview schedule is a many-to-many matching. Given a pair of integers

(k,k′), a (k,k′)-constrained interview schedule is a many-to-many matching µ with∣∣∣µ(d)
∣∣∣ ≤ k and

∣∣∣µ(h)
∣∣∣ ≤ k′ for all d and h. Each doctor can interview with at most k

hospitals, and each hospital can interview at most k′ doctors.

Given an interview schedule µ, agents’ interview-truncated preferences are de-

termined by setting ua(b) < ua(a) for all b < µ(a). That is, interview-truncated pref-

erences rank all interviewed agents as in the original preferences, and set all other

agents as unacceptable.

The timing in our model is: (i) An interview schedule is determined as the

doctor-optimal many-to-many (k,k′)-stable matching;8 (ii) Doctors and hospitals

report their interview-truncated preferences as inputs into doctor-proposing DA.

The outcome is the doctor-optimal stable matching on the interview-truncated

preferences. We term this two-step process Int-DA: the Interview process followed

by Deferred Acceptance.

A doctor-optimal interview schedule can be found algorithmically using the

“T-algorithm” (see Blair, 1988; Fleiner, 2003; Echenique and Oviedo, 2006). We

assume it is the result of a decentralized interview scheduling process. While mod-

eling explicitly the interview process would certainly be desirable, our focus is on

the tension between a “pure” application of DA, and one that is preceded by in-

terviews. Assuming a stable outcome at the interview stage provides us with a

simple, tractable model.9 A richer model might allow for some information to be

transmitted at the interview stage. This could further inflate rank differences for

two reasons.10 First, some doctors and hospitals may learn from interviews that

they are not acceptable to one another, thereby limiting further the set of ranked

8Arguably, the doctor-optimal stable matching at the interview stage yields a smaller difference
between reported and actual ranks than other selections of stable matchings.

9In one-to-one matching markets, experimental evidence suggests decentralized interactions
yield stable outcomes at high rates, see Echenique and Yariv (2013). Melcher, Ashlagi, and Wapnir
(2018) propose a stable-matching algorithm for internship interviews. For more on the theory of
many-to-many matching, see Sotomayor (1999); Konishi and Ünver (2006).

10Indeed, while simulations where the idiosyncratic component is only revealed during inter-
views yield qualitatively similar results, quantitatively they do increase the effects (see Figure B.6
in Online Appendix B).
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participants. Second, participants would not discover others whom they would,

with full information, rank very highly but that they did not interview with.

We denote the final matching from Int-DA as µI . We compare µI to the match-

ing obtained from the doctor-proposing DA algorithm using agents’ original pref-

erences, µDA.

3 The Impacts of Interviews

We start by illustrating that when doctors’ preferences are misaligned, interviews

alone cannot explain the findings in the data: Int-DA does not necessarily yield

better-ranked partners in submitted preferences. We then show that some prefer-

ence alignment, in the presence of interviews, leads to patterns similar to those in

the data.

3.1 Preference Misalignment

To illustrate that interviews can have the opposite effect when doctors preferences

are misaligned, consider a matching market with three doctors, {d1,d2,d3}, and

four hospitals, {h1,h2,h3,h4}.11 Hospitals’ preferences are common: they all prefer

d1 to d2, d2 to d3, and d3 to staying unmatched. Doctors rank all hospitals as

acceptable, with preferences given by (first to last):

d1: h1, h3, h2, h4;

d2: h2, h3, h1, h4;

d3: h3, h1, h4, h2.

Under DA, di matches to hi . So the rank-order of d3’s match is 1.

Suppose interview constraints are k = k′ = 2. All doctors want to interview with

h3, but only d1 and d2 are able to. The resulting interview schedule is: d1 with h1

and h3; d2 with h2 and h3; and d3 with h1 and h4.

Given the interview-truncated preferences, di matches with hi for i = 1,2, but

d3 is matched with h4. The Int-DA rank-order of d3’s match is therefore 2, so

the presence of interviews leads her to a strictly lower rank-order than under DA

11It is straightforward to construct more intricate examples with equal numbers of doctors and
hospitals.
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without interviews. Furthermore, the outcome under Int-DA is unstable for the

original preferences.

In this example, there is substantial disagreement between doctors’ preferences—

there are no pairwise comparisons of hospitals {h1,h2,h3} on which doctors agree.

In contrast, our discussion of the NRMP data emphasized the role of common com-

ponents in the doctors’ and hospitals’ preferences. We now show that some degree

of agreement between doctors’ ranking of hospitals rules out such examples, and

interviews can explain observed high match ranks.

3.2 Aligned Preferences

We start with the extreme case where doctors’ preferences are common.

Proposition 1. Suppose k = k′ and that doctors’ preferences are identical. For any
doctor d, the rank-order of µI (d) in her interview-truncated preference is always weakly
lower than the rank-order of µDA(d) in her actual preference �d .

The proof appears in Online Appendix A. Intuitively, when doctors’ prefer-

ences are common, only one of the doctors under DA is matched to the highest-

ranked hospital, one to the second-highest, etc. In particular, n − k doctors are

matched to a hospital ranked below their top k. In contrast, interviews allow for

presorting of doctors to hospitals they have a chance of matching with. Interviews

also limit how low a matched hospital can be ranked in the reported preferences:

it can never be lower than k.

The proposition assumes k = k′ mainly for expository reasons. In our main

result below we allow the two capacities to differ.

3.3 Large Markets

We now demonstrate that perfect preference alignment is not necessary. As long

as there is a common-value component in agents’ preferences, however small, the

message of our first result holds in large markets.

We expand the model to account for market size and randomly generated pref-

erences. For each n, let En = (Dn,Hn,Un, kn, k′n) denote a market, where Dn =

{d1, . . . ,dn},Hn = {h1, . . . ,hn}, each utility function is randomly drawn with a common-

value and idiosyncratic component, and kn (k′n) is the limit on doctors’ (hospitals’)
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interviews. Specifically, suppose that

und (h) = λDch + (1−λD)ηd,h and unh (d) = λHcd + (1−λH )ηh,d ,

for all d ∈ Dn and h ∈ Hn, where λD ,λH ∈ (0,1). Moreover, assume that una (a) = 0.

The common-value components ch and cd are crucial for our results, but need not

dominate doctors’ utilities: λD ,λH > 0 may be arbitrarily small.

Suppose that ch, cd , ηd,h, and ηh,d are all drawn from absolutely continuous

distributions with support on a convex subset of R+. Let µIn denote the matching

resulting from the Int-DA process in the n-sized market En, and µDAn the corre-

sponding outcome of the doctor-proposing DA; these matchings are random and

depend on realized utilities. The Int-DA procedure determines a matching µIn by

choosing a (kn, k′n)-constrained interview schedule µ̂ as the doctor-optimal many-

to-many stable matching, followed by the doctor-proposing DA using the induced

preferences.

Proposition 2. Let En = (Dn,Hn,Un, kn, k′n) be a sequence of markets satisfying our
assumptions. Fix an integer sequence Mn ≥ 1, and let D ′n be the set of doctors d ∈ Dn
in market En for whom the rank of µIn(d) in their interview-truncated preferences is Mn

positions above the rank of µDAn (d) in their true preference. If kn and Mn are o(n), then,
for any θ > 0,

lim
n→∞

P
(1
n

∣∣∣D ′n∣∣∣ ≥ 1−θ
)

= 1.

The proof of Proposition 2 appears in the Appendix. The idea underlying it is

simple. Consider DA, let ε > 0, and fixMn = 1. By Lee (2016), when n is large, with

high probability, the set An(ε, (c,η)) of doctors that are within ε of their “target”

assortative utility in DA accounts for at least 1−θ/2 of all doctors. Let B(cd ,n) be

the event that fewer than kn hospitals provide doctor d a utility greater than d’s

target utility. We denote by βn the probability that a fraction of at least θ/2 doctors

have a “small” number (at most kn) of hospitals above their target utility. We show

that for n large enough, βn < π/2, and by Lee (2016), P
(

1
n

∣∣∣An(ε, (c,η))
∣∣∣ ≥ 1−θ/2

)
>

1−π/2. Thus, the event that B(cd ,n) is false for a fraction ≥ 1−θ/2 of doctors and
1
n |An(ε, (c,ε))| ≥ 1 − θ/2, has probability ≥ (1 − π/2) + (1 − π/2) − 1 = 1 − π. At the

intersection of these conditions, for a fraction ≥ (1 − θ/2) + (1 − θ/2) − 1 = 1 − θ of

d ∈ Dn, we have that B(cd ,n) is false and d ∈ An(ε). Hence, for a fraction ≥ 1 − θ
of d ∈ Dn, there are more than kn hospitals above their target utility, and they are
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within ε of their target utilities.

Convergence rates for the large-market result in Proposition 2 are modest, with

(poly-)logarithmic or polynomial growth in the relevant “approximation guaran-

tees” θ and π. In words, the market size needed for Proposition 2 does not grow

too quickly with the approximation guarantees. This message complements the

simulations in Section 4, which assume (arguably) realistic market sizes, and can

be formalized as follows (a proof is in Online Appendix A):

Proposition 3. Let En and D ′n be as in the statement of Proposition 2. Fix θ,δ ∈ (0,1).
Then P

(
1
n |D

′
n| ≥ 1−θ

)
≥ 1 − δ for n = Θ((ln(1/π))4) as π→ 0, and n = Θ((1/θ)4) as

θ→ 0.

4 Simulations

Our theoretical findings raise three important questions. The first regards market

size. Proposition 2 is asymptotic, and it is natural to consider whether interviews

matter for smaller, more realistic, market sizes. The second question regards un-

matched agents. One might worry that interview-truncated preferences give rise

to large numbers of unmatched participants, beyond those observed in the NRMP.

The final question regards stability. Ideally, the difference between outcomes un-

der DA and the interview-truncated DA procedure would be small.

We address these questions using extensive numerical simulations across the

preference parameters λD and λH . In total, we examine 275 different parame-

terizations, representing approximately 1 million simulated participants. We also

consider a variety of robustness checks. Section B.2 in Online Appendix B provides

a summary and more-detailed results. To compactly display our main results, Ta-

ble 1 aggregates our findings across balanced markets (N doctors andN positions)

corresponding to the many smaller sub-markets that compose the NRMP.12 We

examine three algorithmic solutions:13

12For each pair (λD ,λH ) and simulation proportion fN , we fit a linear model for log(fN /(1− fN ))
against log(N ), where goodness of fit for this approach is shown in Figure B.4 in Online Appendix
B. We predict the proportion f̂ (Nj ) for each sub-market of size Nj listed in Table 13 of the 2020
NRMP report (from 22 positions for Pediatrics/Medical Genetics to 9,127 for Internal Medicine).
We then aggregate across these sub-markets to form a composite NRMP measure for f over the

NT = 35,704 positions as
∑
j
Nj
NT
f̂ (Nj ).

13To assess robustness, we also conducted simulations examining: (i) imbalanced markets; (ii)
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• Doctor- and hospital-proposing deferred acceptance (DA).

• The stable interview allocation with k = k′ = 5 slots per position, followed by

both doctor- and hospital-proposing deferred acceptance on the interview-

truncated preferences (Int-DA).14

• Doctor- and hospital-proposing deferred acceptance on preferences trun-

cated to the k = k′ = 5 top-ranked options (Tr-DA).

Table 1 provides NRMP-scaled simulation outcomes for six different (λD ,λH )

pairs. Simulations with Tr-DA were added to distinguish the pure effect of trunca-

tion from the interview process our paper focuses on.15 The first panel in the table

provides three characteristics of the match outcome: (i) the fraction of unmatched
participants; (ii) the fraction of doctors matched to their first-ranked program; and

(iii) the proportion of doctors matched to a top-three–ranked program.

Because our simulated markets have the same participant volume on each side,

with all possible matches acceptable, the benchmark for DA with full preferences

predicts no unmatched doctors. In contrast, the NRMP data indicates that 5.8%

of US seniors are unmatched. The first result from our simulations in Table 1

illustrates that the two-stage Int-DA process leads to a similar unmatched rate as

the NRMP. Doctors in our simulations are unmatched after the Int-DA process at

a 5.5% rate. Moreover, this proportion does not change substantially with either

market size or the common weight. In contrast, a direct truncation to the top-five

participants on the other side leads to substantially more unmatched participants.

Moreover, the unmatched rate grows sharply with increases to N and λ.

The next pair of results from the Int-DA simulations again match the NRMP

data: a large fraction of doctors are matched to top-ranked hospitals. Looking to

NRMP data from the past five years, 48% (73%) of US MD Seniors are matched

to their first-ranked (top-three–ranked) program. The Int-DA simulations indicate

smaller/larger interview capacities; (iii) more extreme values for λD and λH ; (iv) an alternative
interview selection method where hospitals only used the doctor’s common components. Online
Appendix B presents details on these simulations. The main effects of the interview stage are
similar across these exercises.

14To mirror the theory section, we select the doctor-optimal stable interview schedule.
15In simulations where we allowed for information to be realized at the interview stage, hospitals

ranked doctors purely on the common component. The idiosyncratic component is observed at the
interviews, and used in the DA stage. Results are similar to the Int-DA procedure (see Figure B.6 in
Online Appendix B) and suggest that simpler procedures that incorporate both sides preferences
can also be used.
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Table 1: Simulation Outcomes scaled to NRMP size

λH = 1/4 λH = 3/4

λD = 1/4 λD = 1/2 λD = 3/4 λD = 1/4 λD = 1/2 λD = 3/4

Panel A: Matching outcomes
Unmatched [DA: 0.0%, NRMP: 5.4%]†

Int-DA 6.0% 6.4% 8.1% 8.2% 6.5% 5.6%
Tr-DA 26.1% 72.1% 96.0% 27.1% 71.7% 96.2%

First-ranked program [NRMP: 48.1%]†

DA 2.5% 0.2% 0.1% 26.5% 3.0% 0.2%
Int-DA 43.5% 38.7% 32.5% 49.1% 43.7% 41.4%
Tr-DA 22.7% 4.1% 0.2% 31.2% 5.2% 0.2%

Top-three–ranked program [NRMP: 73.2%]†

DA 7.4% 0.5% 0.3% 48.4% 8.1% 0.6%
Int-DA 81.6% 79.6% 75.0% 81.6% 81.5% 81.2%
Tr-DA 55.0% 15.1% 1.3% 59.1% 17.2% 1.3%

Panel B: Core size, similarity to DA, and stability
Same partner under proposer change | Matched [NRMP: 99.9%]‡

DA 41.9% 90.0% 99.5% 99.3% 99.2% 98.8%
Int-DA 99.9% 99.9% 100.0% 100.0% 99.9% 99.8%

Identical partner to DA | Matched

Int-DA 73.8% 82.6% 79.8% 80.1% 74.6% 81.0%
Proportion blocking programs in Int-DA

Matched 0.1% 0.6% 1.0% 0.1% 0.7% 1.8%
Unmatched 9.1% 7.3% 8.3% 19.2% 24.6% 34.3%

Note: Table uses an estimated logit-model for each (λD ,λH ) pair to form an estimate at NRMP scale
(∼35,000 positions) using the sub-market sizes listed for the 2020 NRMP. See Online Appendix for
tables at separateN †–Average for US MD Seniors in 2016–20. Source: Results and Data: 2020 Main
Residency Match, Table 15, available from nrmp.org. ‡–Figure reported for main NRMP match in
Roth and Peranson (1999). Smaller thoracic surgery market (N ' 120) has a 99.6 percent unique
match for five reported years in 1991–96 (ibid, tables 1 and 3).
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similarly-sized effects to the observed NRMP figures, at 40–50% (75–82%).16 In

contrast, the pure DA algorithm on the full preference lists implies substantially

lower rates of top-ranked outcomes—matches to the first-ranked program are only

found at substantial rates when hospitals have strong common components, and

doctors are almost fully idiosyncratic (as depicted in Figure 1).

In the second panel of Table 1 we turn to other observed match outcomes.

These outcomes are not part of our explanation of reduced match ranks, but serve

to evaluate the empirical relevance of our interviews model. The first outcome is

motivated by Roth and Peranson’s (1999) finding that NRMP data exhibit small

cores. Using NRMP ranking data from the 1990s, they examine the change in

outcomes moving from the doctor- to the hospital-proposing DA. They find that

99.9% of doctors receive the same outcome, implying a unique stable partner. In

the same partner under proposer change rows we mirror this exercise. Our DA simu-

lations get close to the NRMP figure only with heavy weights on the common com-

ponent. While most participants across each of the simulations do have a unique

stable partner, the minority with multiple partners are at least an order of magni-

tude larger than in Roth and Peranson (1999). However, changing the proposing

side over the interview-truncated rankings from Int-DA indicates much-closer ef-

fects to the NRMP field study.

Our simulations of the Int-DA procedure show that it can reproduce stylized

results reflective of the observed NRMP figures—over unmatched rates, over the

fraction of first-ranked outcomes, and over the small cores found in rank-order list

data. Moreover, the Int-DA process does so generically, across market sizes and the

common-preference weights.17

Given the fit with observed data regularities, a natural question regards the dif-

ference between outcomes under Int-DA and standard DA. The final set of results

in Table 1 speaks to this question.

The identical partner to DA row directly contrasts the Int-DA and DA match

outcomes. Our results illustrate that the large majority of matched doctors (∼75–

80%) in the Int-DA procedure are matched to the exact same partner they would

16The Int-DA fraction matched to their first-ranked program does increase slightly as we increase
N (see Tables B.1–B.6 in Online Appendix B) and as we decrease λD/increase λH .

17We also examined imbalanced markets, with an excess of doctors. The Int-DA results for these
simulations are qualitatively similar. However, we note that DA results allowing imbalance exhibit
more frequent unique stable matchings Ashlagi, Kanoria, and Leshno (per 2017) (see Tables B.7
and Figure B.3 in Online Appendix B).
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have matched with under DA with full preferences reports.18 While four of ev-

ery five doctors are entirely unaffected by the interview process, one in five being

affected is clearly far from negligible.19

In the last section of Table 1 we evaluate the effects on stability. For each doctor

in our simulations we calculate the proportion of programs they form a blocking

pair with. We report the average proportion, distinguishing between matched and

unmatched doctors. Matched doctors exhibit some instability, despite both stages

in the two-stage process being chosen to select stable outcomes. Averaging across

parameterizations, a blocking pair is detected for matched doctors 0.7% of the

time. Unsurprisingly, instabilities are more substantial for unmatched doctors. A

randomly chosen hospital yields a blocking pair between 8% and 34% of the time

for each unmatched doctor, depending on the parameterization.

5 Conclusion

Much of the matching literature has focused on the centralized clearinghouse

governing the match of newly-minted doctors and residency positions. We illus-

trate the possibility that decentralized interactions preceding the match—namely,

interviews—may dramatically impact ultimate outcomes.

For the NRMP, our results imply that empirical estimations based on prefer-

ences submitted to the clearinghouse should not be taken at face value. More

broadly, beyond the NRMP, our paper suggests that interactions outside of the

clearinghouse can have dramatic effects on outcomes.

Our model focuses on the role interviews can have purely in terms of selection.

In our setting, there is no constructive role for information acquisition during the

interviews (see, however, Figure B.6 in Online Appendix B, for one model variant

allowing for information transmission during the interviews). Our algorithmic

approach offers a base for future research to explore richer interactions preceding

matching clearinghouses.

18In a series of robustness exercises we also examine balanced-market simulations with different
values of k (see Tables B.8–B.11 and Figure B.5 in Online Appendix A), indicating that the DA
and Int-DA outcomes become more similar as k increases. Nonetheless, we still find that, among
matched doctors, ∼75% get the same exact match as under DA even when k = 2.

19For those matched to distinct partners under Int-DA and DA, matches tend to be close in rank-
ing terms. See Figures B.7 and B.7 in Online Appendix A for illustration.
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A Proof of Proposition 2

Let k′′n = kn +Mn and note that k′′n is o(n).

With some notational abuse, we drop λD and 1−λD , and write cd for λDcd , ηd,h
for (1−λD)ηd,h, etc. This re-scaling implies that utilities are sums of the common

and private value components: und (h) = ch+ηd,h, and unh (d) = cd+ηh,d . The probabil-

ity distributions are re-scaled correspondingly, but remain absolutely continuous.

Without loss of generality, we assume distributions have compact support (other-

wise, choose a compact set that accumulates large enough probability). Moreover,

we take the support to be [0,1].

Let D = ∪nDn and H = ∪nHn. Consider tuples (c,η), with c = (ca)a∈H∪D and

η = ((ηa,b)(a,b)∈H×D , (ηa,b)(a,b)∈D×H ).

The tuples (c,d) are endowed with the product probability measure from the i.i.d.

distributions described.

Let G denote the cumulative distribution function corresponding to cd . Fix

θ,π ∈ (0,1). Choose c? and ε,δ ∈ (0,1) such that 1 − G(c?) + δ < θ/4 while 0 <

P (ch+ηd,h > c? + 1 +ε). These choices are possible due to the absolute continuity of

the distributions of cd , ch, and ηd,h. Write p(c?) for P (ch + ηd,h > c? + 1 + ε).

If agents match assortatively based on the common component, a doctor d

should be able to find a hospital h for which it has idiosyncratic utility close to

1, and this hospital should provide d with (approximately) the same utility cd + 1

as it receives from matching with d. Think of cd + 1 as d’s “target utility.” Let

An(ε, (c,η)) = {d ∈Dn : cd + 1− ε < ud(µDAn (d)) < cd + 1 + ε}

be the doctors for which this target is achieved (in DA), up to ε. We prove that,

when n is large enough, with large probability, a fraction of at least 1−θ/2 doctors

are in An(ε, (c,η)).

Consider the number of hospitals ranked above a doctor’s adjusted target util-
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ity cd + 1 + ε. Let

B(cd ,n) = {
∣∣∣h ∈Hn : ch + ηd,h > cd + 1 + ε

∣∣∣ ≤ k′′n }
be the event that fewer than k′′n hospitals provide d a utility greater than d’s target

utility. We denote by βn the probability that a fraction of at least θ/2 doctors have

a “small” number, at most k′′n , of hospitals above their target utility.

We prove that for n large enough, βn < π/2 and P
(

1
n

∣∣∣An(ε, (c,η))
∣∣∣ ≥ 1 − θ/2

)
>

1−π/2. Thus, the event that B(cd ,n) is false for a fraction≥ 1−θ/2 of doctors and the

event
(

1
n |An(ε, (c,ε))| ≥ 1−θ/2

)
holds, has probability≥ (1−π/2)+(1−π/2)−1 = 1−π.

At the intersection of these events, it holds for a fraction ≥ (1−θ/2)+(1−θ/2)−1 =

1 − θ of d ∈ Dn that B(cd ,n) is false and d ∈ An(ε). Hence, for a fraction ≥ 1 − θ
of d ∈ Dn there are more than k′′n hospitals above their adjusted target utility, and

they are within ε of their target utilities, hence below the adjusted target. The

rank-order of any partner in µI is at most kn. Since Mn = k′′n − kn, these statements

prove the proposition.

To complete the proof we present the required calculations.

If cd ≤ c? , then

P (B(cd ,n)) = P (
∑
h∈Hn

1ch+ηd,h>cd+1+ε ≤ k′′n )

≤ P

1
n

∑
h∈Hn

1ch+ηd,h>c?+1+ε ≤ p(c?)− (p(c?)− k
′′
n

n
)


≤ exp(−2(p(c?)− k

′′
n

n
)2n) (1)

by Hoeffding’s inequality (observe that, eventually, p(c?)− k
′′
n
n > 0).

Let

βn = P (|{d ∈Dn : B(cd ,n)}| > nθ/2)

≤ P


∣∣∣{d ∈Dn : B(d,n) and cd ≤ c?}

∣∣∣︸                                ︷︷                                ︸
Zn

+
∣∣∣{d ∈Dn : cd > c

?}
∣∣∣︸                ︷︷                ︸

Yn

> nθ/2


≤ P (

1
n
Zn + 1−G(c?) + δ > θ/2) + P (

1
n
Yn > 1−G(c?) + δ).
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The first inequality follows by counting all d with cd > c? as if B(d,n) were true, so

the random variable Yn counts all d ∈Dn with cd > c? as if they were in B(cd ,n).

The second inequality is a truncation exercise, partitioning the probability

space into two events. The first is 1
nYn ≤ 1 − G(c?) + δ and the second 1

nYn >

1 − G(c?) + δ. Under the second event, 1
nZn + 1

nYn > θ/2 as 1 − G(c?) + δ > θ/2.

Under the first event, the inequality is obtained by raising 1
nYn to 1−G(c?) + δ.

Applying Hoeffding’s inequality again,

P (
1
n
Yn > 1−G(c?) + δ) ≤ exp(−2δ2n). (2)

Now,

P (Zn > n(θ/2− [1−G(c?) + δ)]) ≤ P (∪d∈DnB(d,n))|cd = c?)

≤
∑
d∈Dn

P (B(d,n)|cd = c?)

≤ nexp(−2(p(c?)− k
′′
n

n
)2n), (3)

where the first inequality follows as n(θ/2− (1−G(c?)+δ)) ≥ 1, and the probability

of B(d,n) is maximized when cd = c? .

Choose n such that

n(θ/2− [1−G(c?) + δ]) > 1, (4)

exp(−2δ2n) < π/4, (5)

nexp(−2(p(c?)− k
′′
n

n
)2n) < π/4, (6)

and P
(1
n

∣∣∣An(ε, (c,η))
∣∣∣ ≥ 1−θ/2

)
> 1−π/2. (7)

Observe that (4) is possible as θ/2− [1−G(c?)+δ] > 0. Inequality (6) requires k′′n be

o(n), which holds by hypothesis, and our choice of c? to ensure that p(c?)−k′′n /n > 0

is eventually bounded away from zero. Inequality (7) is possible by Theorem 1 of

Lee (2016).

By (2),(3),(5), and (6), we obtain that

βn ≤ nexp(−2(p(c?)− k
′′
n

n
)2n) + exp(−2δ2n) < π/2. (8)
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Statements (7) and (8) provide the required bounds.
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