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Situations in which agents' choices depend on choices of those in close proximity, be it

social or geographic, are ubiquitous. Selecting a new computer platform, signing a political

petition, or even catching the u are examples in which social interactions have a signi�cant

role. While some behaviors or states propagate and explode within the population (e.g.,

Windows OS, the HIV virus) others do not (e.g., certain computer viruses).1 Our goal in

this paper is twofold. First, we provide a general dynamic model in which agents' choices

depend on the underlying social network of connections. Second, we show the usefulness of

the model in determining when a given behavior expands within a population or disappears

as a function of the environment's fundamentals.

We study a framework in which agents each face a choice between two actions, 0 and 1

(e.g., whether or not to pursue a certain level of education, switch to Linux OS, etc.). Agents

are linked through a social network, and an agent's payo�s from each action depends on the

number of neighbors she has and her neighbors' choices. The di�usion process is de�ned so

that at each period, each agent best responds to the actions taken by her neighbors in the

previous period, assuming that her neighbors follow the population distribution of actions

(a mean-�eld approximation). Steady states correspond to equilibria of the static game.

Under some simple conditions, equilibria take one of two forms. Some are stable, so that

a slight perturbation to any such equilibrium would lead the di�usion process to converge

back to that equilibrium point. Other equilibria are unstable, so that a slight change in

the distribution of actions leads to a new distribution of actions and eventually to a stable

steady state. We call such equilibria tipping points. We analyze how the environment's
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Division of the Humanities and Social Sciences, Caltech, Pasadena, CA 91125, lyariv@hss.caltech.edu. We
are grateful for �nancial support from the Center for Advanced Studies in the Behavioral Sciences and the
Guggenheim Foundation. We thank Tanya Rosenblat for a helpful discussion of the paper.

1See Everett Rogers (1995), as well as virus prevalence data at http://www.virusbtn.com/ and summary
statistics in Romualdo Pastor-Satorras and Alessandro Vespignani (2000).
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fundamentals (cost distribution, payo�s, and network structure) a�ect the set of equilibria,

and characterize the adoption patterns within the network.

The paper relates to recent work on network games and network di�usion, including work

by Stephen Morris (2000), Pastor-Satorras and Vespignani (2000), Mark Newman (2002),

Dunia Lopez-Pintado (2004), Jackson and Brian Rogers (2007), Jackson and Yariv (2005),

and Andrea Galeotti, Sanjeev Goyal, Matthew Jackson, Fernando Vega-Redondo, and Leeat

Yariv (2005; henceforth GGJVY). Its contribution is in characterizing di�usion of strategic

behavior and analyzing the stability properties of equilibria, and employing methods that

allow us to make comparisons across general network structures and settings. Given that

social networks di�er substantially and systematically in structure across settings (e.g., ethnic

groups, professions, etc.), understanding the implications of social structure on di�usion is

an important undertaking for a diverse set of applications.

1. The Model

1.1. Social Networks and Payo�s. We consider a set of agents and capture the social

structure by its underlying network. We model the network through the distribution of the

number of neighbors, or degree, that each agent has. Agent i's degree is denoted di: The

fraction of agents in the population with d neighbors is described by the degree distribution

P (d) for d = 0; 1; ::::; D (with the possibility that D =1), where
XD

d=1
P (d) = 1:

Let eP (d) � P (d)d

d
, where d = EP [d] =

P
d P (d)d. This is a standard calculation of the

probability of the degree of an agent conditional on that agent being at the end of a randomly

chosen link in the network.

Agents each have a choice between taking an action 0 or an action 1. Without loss of

generality, we consider the action 0 to be the default behavior (for example, the status-

quo technology). Agent i has a cost of choosing 1, denoted ci. Costs are randomly and

independently distributed across society, according to a distribution Hc; that we assume to

be atomless. We normalize the payo� from taking the action 0 to be 0.2 Agent i's payo�

from adopting behavior 1 when i has di neighbors and expects them each independently to

2In Jackson and Yariv (2006), we analyze the more general case in which Hc may contain atoms and
payo�s to the action 0 may depend on an agent's degree. The latter is important for welfare implications,
but the normalization here is without loss of generality for strategic considerations.
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choose 1 with a probability x is v(di; x)� ci: Therefore, i prefers action 1 if ci 6 v(di; x).
We illustrate the generality of the framework by noting a few special cases: (i) v(d; x) =

u(dx) - an agent's payo�s are a function of the expected number of neighbors adopting the

action 1. This corresponds to the framework analyzed in GGJVY. (ii) v(d; x) = u(x) - agents

care only about the average play of their neighbors. Network structure does not enter. (iii)

v(d; x) is a step function, for instance taking one value if x lies below a threshold (possibly

depending on d), and taking another value if x exceeds the threshold.

1.2. Bayesian Equilibrium. We consider symmetric Bayesian equilibria of the network

game: (i) Each agent i knows only her own degree di and cost ci, the distribution of degrees in

the population, and assumes that degrees and cost parameters are independently allocated.

Thus, the game is a Bayesian game in the Harsanyi sense where types are given by degrees

and costs. (ii) The play is symmetric in that any agent perceives the distribution of play of

each of her neighbors to be independent and to correspond to the distribution of play in the

population.3

Existence of symmetric Bayesian equilibria follows from standard arguments. In cases

where v is non-decreasing in x for each d; existence is a direct consequence of Tarski's Fixed

Point Theorem, and then there exists an equilibrium in pure strategies. In other cases,

provided v is continuous in x for each d; we �nd a �xed point by appealing to standard �xed

point theorems (e.g., Kakutani) and admitting mixed strategies.

A simple equation is su�cient to characterize equilibria. Let x be the probability that

a randomly chosen neighbor chooses the action 1. Then H(d; x) � Hc(v(d; x)) is the prob-

ability that a random (best responding) neighbor of degree d chooses the action 1. It must

be that

x = �(x) �
X
d

eP (d)H(d; x): (1)

Equation 1 characterizes equilibria in the sense that any symmetric equilibrium results

in an x which satis�es the equation, and any x that satis�es the equation corresponds to an

equilibrium where type (di; ci) chooses 1 if and only if ci 6 v(di; x). Given that equilibria

3This is an extension of the concept from GGJVY, where agents have identical costs. The equilibrium is
symmetric in that it depends only on an agent's type (di; ci), and not her label i.
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can be described by their corresponding x, we often refer to some value of x as being an

\equilibrium."

1.3. A Di�usion Process. Consider a di�usion process governed by best responses in

discrete time. At time t = 0; a fraction x0 of the population is exogenously and randomly

assigned the action 1, and the rest of the population is assigned the action 0. At each time

t > 0; each agent, including the agents assigned to action 1 at the outset, best responds to the

distribution of agents choosing the action 1 in period t� 1, presuming that their neighbors

will be a random draw from the population.

Let xtd denote the fraction of those agents with degree d who have adopted behavior 1 at

time t, and let xt denote the link-weighted fraction of agents who have adopted the behavior

at time t. That is, xt =
P

d
eP (d)xtd and xtd = H(d; xt�1). Therefore, xt =Pd

eP (d)H(d; xt�1).
If payo�s exhibit complementarities, then convergence of behavior from any starting point

is monotone, either upwards or downwards. Once an agent (voluntarily) switches behaviors,

the agent will not want to switch back at a later date. Thus, although best responses are

myopic, any changes in behavior are equivalently forward-looking. Any rest point of the

system corresponds to a static Bayesian equilibrium of the system. If actions are strategic

substitutes, convergence may not be guaranteed for all starting points. However, our results

will still be useful in characterizing the potential rest points, or equilibria, of such systems.

2. Equilibrium Structure

2.1. Multiplicity. The multiplicity of equilibria is determined by the properties of �,

which, in turn, correspond to properties of eP and H.4 In general, as long as the graph

of �(x) crosses the 45 degree line only once, there is a unique equilibrium (see Figure 1

below). There is a conceptual connection between our analysis and the recent literature on

global games identifying forms of heterogeneity guaranteeing uniqueness when a game with

complementarities admits multiple equilibria (see Stephen Morris and Hyun Shin (2003)).

The heterogeneity determining uniqueness in our setup is introduced through the costs agents

experience, as well as through the di�erent degrees agents have. Our analysis allows us to

study the set of stable and unstable equilibria, regardless of multiplicity.

4Jackson and Yariv (2006) discuss multiplicity and when 0 is an equilibrium point.
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2.2. Stability. Some equilibria are robust to small perturbations, and are therefore sta-

ble, while other equilibria are not robust and from them small perturbations lead to sig-

ni�cant changes in the distribution of play in the population. These are captured in the

following de�nitions capture.

De�nition 1. [Stability and Tipping]. An equilibrium x is stable if there exists "0 > 0

such that �(x � ") > x � " and �(x + ") < x + " for all "0 > " > 0. An equilibrium

x is unstable or a tipping point if there exists "0 > 0 such that �(x � ") < x � " and

�(x+ ") > x+ " for all "0 > " > 0.

De�nition 2. [Regular Environment]. An environment is regular if all �xed points are

either stable or unstable and H is continuous.

De�nition 3. [Greater Di�usion]. One environment, with corresponding mapping e�(x);
generates greater di�usion than another, with corresponding mapping �(x); if for any

stable equilibrium of the latter there exists a (weakly) higher stable equilibrium of the

former, and for any unstable equilibrium of the latter there is either a (weakly) lower

unstable equilibrium of the former or else e�(0) > 0:
An environment has greater di�usion than another if its tipping points are lower, thus

making it easier to get di�usion started, and its stable equilibria are higher, and so the

eventual resting points are higher.

Proposition 1. Consider � and � corresponding through (1) to two regular environments.

If �(x) > �(x) for each x, then � generates greater di�usion than �.

[�gure 1 here]

Proposition 1 implies that a small upward shift in a (continuous) � leads to locally lower

tipping points and higher stable equilibria, as illustrated in Figure 1.

3. Comparative Statics

Given that �(x) =
P

d
eP (d)Hc(v(d; x)), and Proposition 1, we can deduce much about

changes in the structure of equilibria by considering changes in fundamentals: costs, returns,

and network structure that shift �(x) in a particular direction for all x. We refer the reader

to Jackson and Yariv (2006) for omitted proofs.



Diffusion of Behavior and Equilibrium Properties in Network Games 6

3.1. Changes in Cost Distribution. We consider increases in costs in terms of �rst

order stochastic dominance shifts of Hc.

Proposition 2 [Increasing Costs]. If H
c
FOSD Hc, then the corresponding �(x); �(x) sat-

isfy �(x) 6 �(x) for each x. Thus, if Hc
, Hc, (given v) correspond to two regular environ-

ments, then Hc generates greater di�usion than H
c
:

As costs increase, agents are generally less prone to take action 1, and so tipping points

are shifting up and stable equilibria are shifting down.

Note that if v(d; x) is non-decreasing in x, then if x� is a stable equilibrium under Hc

and x� 6 x� is a stable equilibrium under H
c
; expected utility of all agents goes up and

expected welfare under Hc when x� is played is higher than under H
c
when x� is played.

3.2. Changes in Network Structure. We consider two types of changes to the network

architecture. The �rst pertains to the number of expected neighbors each agent has. The

second relates to the heterogeneity of connectedness within the population.

Proposition 3 [FOSD shifts]. If eP FOSD eP 0 andH(d; x) is non-decreasing (non-increasing)
in d for all x, then �(x) > �0(x) (�(x) 6 �0(x)) for each x. Thus, if the environments

corresponding to P and P 0 are regular, then P generates greater (lesser) di�usion than P 0:

To gain intuition, consider a case in which v(d; x) is non-decreasing in d. Here, any

symmetric equilibrium entails higher degree agents choosing action 1 with higher probability.

Start then with any such equilibrium under P 0 and consider a shift to P for which eP FOSDeP 0: Without any change in strategies, each agent would perceive her neighbors to be more
likely to have higher degrees. Thus, a best response would entail a greater propensity to

choose the action 1. Iterating best responses converges to an equilibrium involving a (weakly)

higher rate of agents of each type choosing the action 1: It is easier to get the action 1 adopted

and tipping points are lower.5

As for welfare, suppose v(d; x) is non-decreasing in x: A FOSD change in the degree

distribution generates higher expected payo�s corresponding to stable equilibria for agents

5A related result appears in GGJVY (Propositions 4 and 5), but with several di�erences. That result does
not distinguish between stable and unstable equilibria and only applies to a special class of payo� functions,
but that result applies to more general action spaces (in the case where H is non-decreasing).
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of any given type. If the underlying degree distribution itself is shifted in the sense of FOSD

(i.e., P FOSD P 0), then more weight is shifted to higher expected payo� agents and overall

welfare increases. This condition is naturally satis�ed when, e.g., P is a simple translation of

the distribution P 0. Unfortunately, more general forms of FOSD shifts in the distribution of

neighbors' degrees do not always correspond to FOSD shifts in the original degree distribution

and so welfare implications are, in general, ambiguous.6

We now consider changes in the heterogeneity of connectedness through mean-preserving

spreads of the degree distribution.

Proposition 4 [MPS in P ]. If H(d; x) is non-decreasing and convex (non-increasing and

concave) in d, then P is a MPS of P 0 implies that �(x) > �0(x) (�(x) 6 �0(x)) for all x, and
so P generates greater (lesser) di�usion than P 0. Furthermore, if v(d; x) is convex (concave)

in d and non-decreasing in x, then if x� is a stable equilibrium under P and x� 6 x� (x� > x�)
is a stable equilibrium under P 0; the expected welfare under P when x� is played, is higher

(lower) than under P 0 when x� is played.

The greater di�usion result follows from the de�nition of MPS and �(x). Regarding

welfare, let x�; x� be given as stable points satisfying the Proposition's statement. The welfare

level under P when x� is played is
P

d v(d; x
�)P (d): Now,

P
d v(d; x

�)P (d) >
P

d v(d; x
�)P (d)

since v is non-decreasing, and this in turn is greater than or equal to
P

d v(d; x
�)P 0(d); since

P is a MPS of P 0. The claim then follows.

Note that this result implies that if H(d; x) is non-decreasing and convex, then power,

Poisson, and regular degree distributions with identical means generate corresponding values

of �power; �Poisson; and �regular such that �power(x) > �Poisson(x) > �regular(x) for all x:

This is consistent with the simulation-based observations regarding tipping points in the

epidemiology literature (see Pastor-Satorras and Vespignani (2000)).

Proposition 4 is useful in identifying the structure of optimal networks. Indeed, sup-

pose we ask which P with a given average d and support in 1; : : : ; D maximizes �(x) =P
dH(d; x)

P (d)d

d
. If we have a P which maximizes this pointwise, then we know that it leads

to greater di�usion than any other P . It follows directly that:

6See GGJVY and Jackson and Yariv (2006) for discussion on this point and examples.
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Corollary 5 [Optimal Networks]. If H(d; x) is non-decreasing and convex in d, then the P

which maximizes di�usion (under our greater di�usion partial ordering) is one which has

weight only on degree 1 and D (in proportions to yield average degree d). If H(d; x) is

non-increasing and concave in d, then the P which maximizes di�usion (under our greater

di�usion partial ordering) is a regular network with full weight on degree d.

3.3. Changes in Returns to Adoption. We now contemplate changes in the returns

to the action 1 and their e�ects on the eventual adoption rate. This is interesting for a

wide range of applications, e.g., directed advertising in marketing, optimal immunization

processes in epidemiology, etc. We concentrate on the special case in which v(d; x) = ev(d)x.
Consider starting with a given ev(d) and then reordering it to become ev0(d).7 Let us say

that a reordering ev0 of ev is weight increasing if the following condition holds: For any d and
d0 such that ev0(d) 6= ev(d) and ev0(d0) 6= ev(d0), if ev0(d0) > ev0(d) then P (d0)d0 � P (d)d.
The condition states that any values of ev that have been reordered should be reordered

so that higher values are assigned to degrees that have higher conditional weight.

Proposition 6 [Weight Increasing Reorderings]. If ev0 is a weight increasing reordering of ev,
then the corresponding �0 and � satisfy �0(x) > �(x) for all x, and so ev0 generates greater
di�usion than ev.
The implications of the Proposition are that in order to lower the set of tipping points

and increase the set of stable equilibria, the appropriate choice of ev(d) requires matching
the ordering of ev(d) with that of P (d)d.8 The simple intuition is that in order to maximize
di�usion, one wants the the types that are most prone to adopt a behavior to be those who

are most prevalent in the society in terms of being most likely to be neighbors.

Interestingly, this leads to conclusions that are counter much of the common wisdom in

the literature. Indeed, if one can only target a speci�c number of nodes, then one would like

to target those with the highest degree as they will have the greatest number of neighbors.

7Formally, ev and ev0 are reorderings of one another if there is a permutation � of 1; 2; : : : such thatev(�(d)) = ev0(d) for each d.
8Jackson and Yariv (2006) contains the proof, and a result for uniform Hc, where in order to increase

� pointwise, we do not need the reordering to be weight increasing, but rather just to increase weight on
average.
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This is the standard \hub" idea. Note, however, that the exercise here is di�erent. We ask

which types are most inuential, when accounting for the population size and thus their

likelihood to be neighbors.

Under a power distribution P (d)d is decreasing in d. So, in order to maximize adoption

rates we would want a decreasing, rather than increasing, ev(d): For a uniform degree dis-

tribution the reverse holds. For a Poisson distribution, P (d)d is increasing up to the mean

and then decreasing thereafter and the ideal ordering of ev(d) would match this shape, and
be non-monotonic.

4. Convergence Patterns and S-Shaped Rates of Adoption

We close with an analysis of convergence patterns. We can get an idea of the \speed of

convergence" of the system at di�erent points by examining the di�erence xt+1 � xt, or

�(x)� x; summarized as follows:

Proposition 7. Let H(d; x) be twice continuously di�erentiable and increasing in x for all

d. If H(d; x) is strictly concave (convex) in x for all d, then there exists x� 2 [0; 1] such

that �(x) � x is increasing (decreasing) up to x� and then decreasing (increasing) past x�

(whenever �(x) =2 f0; 1g).

Proof of Proposition 7: Note that (�(x)� x)0 =
P

d
eP (d)@H(d;x)

@x
� 1 and (�(x)� x)00 =P

d
eP (d)@2H(d;x)

@x2
. Let x� be such that @H(d;x)

@x
jx� = 1, if it exists. When H is strictly concave

in x, if @H(d;x)
@x

> 1 for all x then set x� = 1, and if @H(d;x)
@x

< 1 for all x then set x� = 0.

When H is strictly convex in x, if @H(d;x)
@x

> 1 for all x then set x� = 0, and if @H(d;x)
@x

< 1 for

all x then set x� = 1. Thus, if H is strictly concave in x, then (�(x)� x)00 < 0. Therefore,

(�(x)� x)0 is positive up to x� and negative beyond it. The reverse holds for H strictly

convex and the result follows.

Proposition 7 helps characterize the di�usion paths. Consider a strictly concave H:

There are three possible equilibria con�gurations: 0 is a unique and stable equilibrium, 0

is an unstable equilibrium and there is a unique stable equilibrium above 0, or 0 is not an

equilibrium and there is a unique stable equilibrium above 0. In the �rst case, �0(0) 6 1

necessarily and the dynamic process would converge to 0 regardless of the starting point. In
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the other cases, if �0(0) > 1, then x� lies above 0 and Proposition 7 implies that the adoption

over time will exhibit an S-shape. From small initial levels of x the change in x will gain

speed up to the level of x�, and will then start to slow down until eventually coming to rest

at the adjacent stable equilibrium.9

We can also say something about adoption patterns by degrees. The dynamic process

corresponding to each degree d is given by xtd = H(d; x
t�1) where xtd is the fraction of agents

of degree d who adopt at time t. In particular, whenever v(d; x) = ev(d)x; then xtd exhibits
the same curvature properties that are discussed above for x itself. Moreover, the curves

corresponding to the di�erent xtd are ordered according to ev(d): In particular, for any stable
point x�; the corresponding distribution according to degrees is given by x�d = ev(d)x� and
the curvature of x�d follows that of ev(d):
The distinction between di�erent adoption paths corresponding to di�erent degree players

is important from an econometric point of view. Indeed, it provides additional restrictions

on fundamentals arising from cross-sectioning data according to social degree.

As an illustration, consider the case in which v(d; x) = dx and Hc is uniform on [c; C], so

thatH(d; x) = min [max (0; dx� c) ; C � c] =(C�c). Figure 2 depicts the adoption dynamics

corresponding to di�erent degree agents in the case in which c = 1; C = 5; and the initial

seed is 0:3. In this example, higher degrees start adopting the action 1 earlier and have

steeper slopes early in the process; consistent with, e.g., the empirical observations on drug

adoption by doctors in James Coleman, Elihu Katz, and Herbert Menzel (1966).

[�gure 2 here]

9S � shaped adoption curves are prevalent in case studies of di�usion. Frank Bass (1969) and follow-ups
provided (network-free) contagion models explaining this general shape, and Peyton Young (2006) provides
a learning model generating S � shaped adoption curves.
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