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1 Introduction

Many economic decisions are preceded by a discovery process yielding the alternative

deemed best. When excavation teams search for minerals, they seek the most promis-

ing tract on their path; When pharmaceutical companies introduce a new drug, they seek

the most potent dosage; When consumers shop online, they seek the best product for their

needs, or the lowest price for their desired item. Since search often entails a cost, such

discovery processes entail two fundamental questions. First, when should search stop and

what outcomes would it deliver? Second, how rapid should search be depending on where

discoveries stand? The canonical models used to answer these key questions—starting

from the landmark studies of Stigler (1961), McCall (1970), and Mortensen (1970)—assume

independent search outcomes. Independence simplifies dramatically the analysis of search:

in its basic form, the distribution of possible discoveries is assumed fixed. Even when

search is carried out sequentially, recall has a limited role and the agent need only look

one step ahead, making the optimization problem effectively static.

Nonetheless, in many settings, search follows a path, and prior discoveries not only

serve as a valuable fallback, but also pave the way for future discoveries. Geological sur-

vey teams face correlation across observations driven by the similarity of adjacent plots.

The adjustment of drug dosages in phase I/II clinical trials commonly follows a pre-

determined sequence, where proximal dosages are understood to produce similar results.

A governmental policymaker may revise a program incrementally until the right feature

combination meets the challenge. A consumer looking for the best product—an item on

Amazon.com, a Neflix movie, or an Airbnb rental unit—often begins search with a simple

query, then considers related suggestions that pop up, until making a choice. Without the

technical convenience afforded by independence, models allowing for correlation, as in

these examples, assume short-lived or myopic agents and a fixed search speed.1 We pro-

vide a framework for studying search by long-lived agents when observations are corre-

lated over time, and when search speed can be adjusted dynamically. We fully characterize

the optimal search policy and analyze how it affects agency relationships.

We consider an agent searching over a pre-prescribed path in continuous time. Indeed,

the search for minerals most commonly occurs over a one-dimensional path, often termed

a vein (U.S. Department of Agriculture, 1995); the adjustment of drug dosages in phase I/II

clinical trials commonly follows a pre-determined sequence of proximal dosages (Thall

and Cook, 2004); and an online shopper may follow a suggested path of related items,

or an ordered sequence of retailers (De los Santos, Hortaçsu, and Wildenbeest, 2012). In

our model, Brownian motion governs the value of each ordered discovery, as in Callan-

1For instance, see Callander (2011), Garfagnini and Strulovici (2016), and our literature review below.
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der (2011). That is, the realized Brownian path maps each ordered discovery to its value.

This structure naturally introduces intertemporal correlation between discoveries: one

moment’s observation forms the expectation for any future moment. Recent papers pro-

vide empirical evidence for Gaussian correlation in the case of oil exploration (Hodgson,

2021) and of consumer product search (Hodgson and Lewis, 2021). Jovanovic and Rob

(1990) develops an axiomatic foundations for the Brownian search evolution in the inno-

vation context.2

While searching, the agent can continuously adjust her search speed, the distance tra-

versed on the realized path per unit of time. Search is costly and depends on the speed

at which the agent traverses the path, with higher speeds associated with greater costs.

For example, a mineral excavation team may need to hire personnel in order to cover

ground faster without sacrificing samples’ precision and drug companies can adjust costly

sample sizes over time to learn the efficacy of different dosages faster or slower. In our

model, whenever the agent stops searching, she can recall all her observations retrospec-

tively and pick the highest, which constitutes her search outcome. The agent’s payoff—her

objective—is the discounted maximal observation from her search net of the cumulative

discounted search costs spent.3 We call such a search process retrospective search. The

special case of retrospective search in which search speed is fixed exogenously is a direct

analog of the classical Stigler (1961) setting, but with correlated samples.

We start by characterizing the agent’s optimal policy. We show that the agent opti-

mally chooses a search speed that depends on the distance between the current discovery

and her best discovery yet. The agent’s optimal search speed is U-shaped. The optimal

search speed is highest when approaching a transition point: either accomplishing a new

peak discovery—a breakthrough—or when nearing search termination—a breakdown. The

optimal search speed depends on search costs, with more log-convex costs associated with

slower search speeds. More patient agents are less responsive to the relative quality of

the current discovery when choosing speed. In fact, absent discounting, a constant search

speed is optimal.

A large literature in operation management focuses on product development speed

and its link to outcomes (see the meta-studies of Chen, Damanpour, and Reilly, 2010 and

Cankurtaran, Langerak, and Griffin, 2013). Our analysis suggests that whenever discount-

ing is non-trivial, optimal search speeds are adjusted as new discoveries are made, increas-

ing when search nears a breakthrough or a breakdown. Consequently, naively considering

2In most search applications, the mere passage of time does not improve outcomes. Therefore, in our
benchmark model we assume no drift. We describe impacts of drift in some of our discussions.

3This implicitly assumes that the agent is risk neutral when it comes to her search outcomes. This greatly
simplifies our exposition. We discuss how our analysis can be extended to risk-averse agents in Section 6.1
and in the Supplementary Materials.
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correlations between outcomes and a snapshot of development speeds may yield mislead-

ing results.

The observation that, with discounting, the optimal speed increases as the agent ap-

proaches a turning point—a breakthrough or a breakdown—is reminiscent of the vast

literature on the so-called goal-gradient hypothesis. First introduced by Hull (1932), and

more recently revived by Kivetz, Urminsky, and Zheng (2006), the goal-gradient hypoth-

esis suggests a tendency for individuals to increase effort as a goal approaches. It has

been used to explain effort patterns in a variety of contexts, from marketing to athletics.

While much of the literature on the goal-gradient hypothesis views the effect as arising

from deeply-ingrained psychological instincts, it emerges in our model as the result of an

optimal search protocol.

Certainly, many search units consider long activity horizons and arguably exhibit less

pronounced discounting. In such settings, our results show that the optimal search speed

is constant and need not respond to the ebb and flow of instantaneous discoveries. Ev-

idence from a variety of environments in which discounting may not be pronounced is

in line with this insight. For example, while mineral exploration teams can choose the

speed of mine digging on their path, standard practices since the 1950s dictate constant

and pre-prescribed speed and depth of sampled wells, independent of prior observations,

see Zhilkin (1961). Similarly, in clinical trials for new drugs, research suggests the use

of a constant sample size for each consecutive dosage, see Brock, Billingham, Copland,

Siddique, Sirovica, and Yap (2017).

The optimal stopping policy takes a remarkably simple form. Specifically, the agent

halts exploration whenever her current discovery falls below some fixed distance from the

best discovery she’s made, where that fixed distance is constant over time. The cutoff for

stopping evolves over time: as the agent accumulates greater discoveries, she becomes

more demanding and stops more willingly.

The optimal stopping policy of a retrospective searcher stands in stark contrast to op-

timal search policies when observations are independent. With independence, a searching

agent optimally satisfices, stopping when an observation’s value is sufficiently high. Intu-

itively, an observation today foretells nothing about the future and continuation values

are therefore constant over time. Since search is costly, when observing a sufficiently high

value, the agent should stop. With correlation, the agent optimally stops when an ob-

servation’s value is sufficiently low: such an observation foretells poor observations in the

immediate future and indicates a long duration till additional breakthroughs are made.

Our characterization of the optimal stopping boundary is consistent with many search

strategies already utilized in the field. For instance, it suggests that when prospecting

for, say, oil, hitting wells on the path that are worse than the most promising wells already
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identified should limit additional excavation. Similarly, when looking for the optimal drug

dosage in clinical trials, evidence of severe side effects should limit exploration of larger

dosages—see Thall and Cook (2004) for a detailed algorithm specifying a stopping policy

in line with the one we suggest. Our characterization also offers caution for empirical stud-

ies estimating search behaviors assuming independence of observations, see the influential

study of De los Santos et al. (2012). In particular, agents halting their search with poor

observations, or utilizing recall, need not indicate naïve search heuristics, but can instead

be explained through an underlying correlation in agents’ search path.

In the last part of the paper, we embed our retrospective-search model within a principal-

agent interaction. Many search processes, particularly in the realm of research and devel-

opment, occur within organizations. Financiers contract with mining firms, CEOs manage

R&D teams, voters manage politicians, etc. We consider simple contracting instruments

that we term commission contracts, reminiscent of the sharing rules first considered by

Aghion and Tirole (1994). A commission contract entails a flow wage while the agent is

searching, and a share of the ultimate maximal discovery value, the so-called commission.

For example, joint venture contracts between investors and mining companies often spec-

ify fixed or flow transfers, in addition to commissions on findings, see Root (1979). Simi-

larly, university licensing agreements commonly include both fixed fees and royalties, see

Jensen and Thursby (2001). When search observations are independent, the optimal con-

tract is generally not amenable to analysis—see our Supplementary Materials for details.

Optimal contracts for retrospective searchers, however, are highly tractable.

We characterize the optimal contract, which inherits some of the features of the single-

agent optimal search. Absent discounting, the agent is induced to search at a constant

speed. The optimal wage and commission depend on the level, marginals, and curvature

of the search costs in a non-trivial manner. For the special case of exponential search costs,

we show that the agent searches with lower speed when under a commission contract

relative to when searching alone. In fact, we show that contractual frictions come at a

substantial cost of nearly a quarter, or 24%, of the surplus.

From a technical viewpoint, retrospective search combines a stopping problem with

a control problem. Such problems have received limited attention in both the social sci-

ences and the mathematics literature, particularly in the presence of discounting, see our

literature review below. The paper offers a methodological contribution by illustrating

techniques for solving these types of problems, which we hope will be useful for a variety

of other contexts.
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2 Related Literature

As already noted, the basic model of search with independent observations was introduced

by Stigler (1961), McCall (1970), and Mortensen (1970). The model has been extended in

many ways, see, for instance, Olszewski and Weber (2015) and references therein. It has

been used in a wide array of applications, ranging from job search, see, e.g., Miller (1984)

and references that followed, to real estate markets, see Quan and Quigley (1991). There

are two important differences between our setting and the canonical search model. First,

we consider samples that are correlated over time. Second, we allow the agent to choose

her search speed at any point.

Modeling correlation over time using a Brownian path in a search setting is inspired

by Callander (2011).4 However, in Callander’s setting, agents are short-lived, and can

only decide whether to choose the optimal historical action or experiment with a new

one, for which they get rewarded. Experimentation is then costly only in so far as it im-

pacts rewards. Utilities are negatively proportional to the distance of the sample from

0. Callander and Matouschek (2019) offers a generalization allowing for some risk aver-

sion. Garfagnini and Strulovici (2016) consider a related setting in which each risk-neutral

short-lived agent effectively chooses a timed product, where product values follow a Brow-

nian path. Later-timed products are then associated with greater variances. Thus, as in our

setting, agents have some control over the variance, though it is restricted to a particular

functional form. Urgun and Yariv (2021) consider a similar setting to this paper’s in which

a non-discounting agent is constrained to search within a fixed amount of time. Cete-

men, Urgun, and Yariv (2022) consider search over a Brownian path by evolving teams

of infinitely-patient agents. Wong (2022) studies the tension between exploration and

exploitation when a firm searches for its ideal production scale, the returns to which fol-

low a Brownian path. Firms get flow utilities from their samples throughout and pay a

quadratic cost for their exploration speed. While closed-form solutions for the optimal

policy are challenging to obtain, it is shown that exploration hastens after poor outcomes

and that search stops when observed outcomes are sufficiently poor.

As already discussed, recent papers provide empirical evidence for Gaussian correla-

tion in consumer product search and oil exploration, see Hodgson and Lewis, 2021 and

Hodgson (2021). Hodgson and Lewis (2021) present a theoretical framework for estimat-

ing correlations between spatially proximal alternatives. They further characterize some

features of behavior when agents use a one-period look ahead heuristic.

The idea that speed, or variance, might be a control variable associated with costs ap-

pears in other experimentation models. For instance, Moscarini and Smith (2001) consider

4See Jovanovic and Rob (1990) for axiomatic foundations of search discoveries following a Brownian path.
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a sequential sampling setting in which an agent can control the precision of the signals she

receives. The labor literature, going back to Pissarides (1984), has considered models of

labor search in which firms or workers can invest in their search intensity, which affects

their probability of finding potential matches; for a review, see Pissarides (2000). Our

consideration of the search speed highlights a different dimension of search efforts when

observations are correlated.

From a technical perspective, our results contribute to the mathematics literature on

optimal stopping in which the objective is related to the maximum seen so far, see e.g.

Peskir (1998) and Obłój (2007). Most of that literature focuses on agents who experience

flow costs and no discounting. In addition, that literature studies optimal stopping absent

a control. Pedersen (2000) do consider optimal stopping in the presence of discounting,

but without a control. Even then, they provide an Ordinary Differential Equation (ODE)

for the stopping boundary, without a general solution. Peskir (2005) considers an agent

who controls the drift, but assumes an exogenous stopping rule: search stops whenever

observations exit a given interval. Furthermore, there is no discounting. He shows a bang-

bang solution. The techniques we develop allow for the analysis of such stopping problems

with both discounting and the inclusion of a control—in our case, the costly search speed.

We hope the methods we introduce open the door for further studies in the area.

Our analysis of contracts relates to the budding literature on contracts for experimen-

tation, which has thus far focused on the (independent) one- or two-armed bandit setting,

see Manso (2011), Halac, Kartik, and Liu (2016), and Guo (2016). As we show in the Sup-

plementary Materials, an analogous agency setting to ours in which the agent searches

over a path of independent samples is far less tractable.

3 A Model of Retrospective Search

Consider a risk-neutral agent—an online shopper, a drug company, or a mineral prospect-

ing team—who is searching in continuous time. Time is indexed by t and runs through

[0,∞). When the agent stops searching, she gets benefits from the maximal value found

throughout her search, net of her accumulated search costs.

The progress of discoveries follows a Wiener process, where the realized sample path

describes the link between new findings and their expected value to the agent. We as-

sume there is a natural progression of exploration. For instance, an online shopper may

follow a suggested path of related items, or an ordered sequence of retailers (De los San-

tos et al., 2012); the adjustment of drug dosages in phase I/II clinical trials often fol-

lows a pre-determined sequence of proximal dosages (Thall and Cook, 2004); and mineral

prospecting most commonly follows a one-dimensional vein (U.S. Department of Agricul-
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ture, 1995). The Wiener process has been axiomatically founded in the innovation context

by Jovanovic and Rob (1990). Its use in our model allows us to capture the correlation be-

tween expected values of similar findings, and the effects of search speed. Recent empirical

work supports the assumption of Gaussian correlation that underlies oil exploration and

consumer choice, see Hodgson (2021) and Hodgson and Lewis (2021).5

Formally, time proxies for the sequence of ordered samples our agent searches through.

For any time t, let Bt denote the standard Brownian motion with B0 = 0. The realized

sample path captures the expected value of each (ordered) finding.

The agent can influence the speed at which the path of findings is traversed. In our ex-

amples, the investment of resources—financial expenditures, volume of patients recruited

to participate in a medical trial, human capital hired, etc.—affects how rapidly search

is conducted. Specifically, the agent chooses a continuous and measurable mapping σ2
t ,

where σt ∈ [σ, σ̄ ]. We assume σ > 0 so that instead of idling, the agent terminates search.

The agent pays a cost c(σt) for any instantaneous search speed σ2
t . We assume that c is twice

continuously differentiable, increasing, and convex. This notation simplifies our presenta-

tion. However, throughout, we slightly abuse terminology and refer to σt, rather than σ2
t ,

as the agent’s search speed. If σ = σ̄ , our setting boils down to one in which the agent has

fixed search speed she cannot control and only chooses when to terminate search.6

Speeding up search is tantamount to the “scaling” of time. We use the fact that such

scaling is equivalent to a change in the standard deviation of the original Wiener pro-

cess: see, for instance, Section 8.5 in Øksendal (2003). That is, when the agent’s speed is

σ2, we can describe the generated values observed at time t—the expected value of the

discovery—that we denote by Xt, using the following law of motion:

dXt = σ̂tdBt,

with X0 = 0.7

Search rewards correspond to the best discovery the agent has: an online shopper

ultimately buys from the cheapest store, a drug company promotes the most efficacious

dosage, and a mineral prospecting team pursues the most promising plot on its track. As

5Our assumption that search occurs in continuous time helps with tractability. It is consistent with the
observation that in many search settings, investigations are inherently incremental. Agents are not aware of
the full set of alternatives at the outset. As search progresses, the menu of possibilities expands.

6For details on this special case, see our Supplementary Materials.
7We assume no drift since, in many of our applications, the mere passage of time does not provide search

improvements. Nonetheless, in Section 6.2 we discuss the impacts of drift. One could also consider alternative
processes with additional features: Lévy processes allowing for discrete breakthroughs; Ornstein-Uhlenbeck
processes implying mean-reversion; or even Brownian motions with ex-ante uncertain features, compounding
learning on top of search. Our approach may be useful for the study of such processes as well.
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search unfolds, the best discovery may improve. Its value is given by Mt, where

Mt = max
0≤r≤t

Xr .

If search ends at time t, the best discovery, the one yielding Mt, gets implemented.

When the search speed is constant over time, σt = σ ∗ for all t, we can use the Reflection

Principle (see, for instance, Rogers and Williams, 2000) to infer that Mt follows the same

distribution as |σ ∗Bt |. Therefore, for any t,

E(Mt) = σ ∗
√

2t/π.

That is, the speed of search directly affects the expected value of the observed maximum.8

Furthermore, the times at which Mt increases by fixed amounts, hitting ∆,2∆, etc. for any

∆ > 0—which can be thought of as times at which substantial breakthroughs are made—

follow an exponential distribution. This is in line with assumptions made in the innova-

tion literature, see for example Kortum (1997).

As mentioned in our literature review, models of labor search often consider firms’ or

workers’ choice of search intensity, which influence the likelihood of encountering poten-

tial matches and consequent expected payoffs, see Pissarides (1984) and Pissarides (2000).

Those models usually assume encounters in the market are independent. In our model,

with correlated samples, the speed of search captures a rather different aspect of search

efforts. Nonetheless, the impact on the expected returns to search are similar, with higher

search speeds yielding higher expected outcomes.

Ultimately, the agent’s problem can be written as:

sup
τ,{σt}τt=0

E
(
e−rτMτ −

∫ τ

0
e−rtc(σt)dt

)
.

The agent’s risk neutrality simplifies our analysis. We discuss the impacts of risk aver-

sion when describing our results, and in Section 6.1. We provide the detailed analysis of

retrospective search by a risk-averse agent in the Supplementary Materials.

When observations are independent, as in Stigler (1961), McCall (1970), or Mortensen

(1970), recall plays no role. The option value of search continuation is fixed over time.

Thus, an outcome rejected in the past is never more appealing in the future. The agent

optimally satisfices and stops search as soon as she observes a sufficiently high outcome,

with no regard to prior realizations. With correlation, recall plays an important role. In

8Formally, let Ta denote the first time Xt hits some level a. Then,

Pr(Mt ≥ a) = Pr(Ta ≤ t) = 2Pr(Xt ≥ a) = Pr(|Xt | ≥ a) ,

where the second equality follows since, if the process hits a at time Ta, it has equal probability of moving
above or below a. Since Bt is normally distributed with mean 0 and variance t, E(Mt) = E(σ ∗ |Bt |) = σ ∗

√
2t/π.
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fact, absent recall, the agent would stop searching immediately, regardless of her current

observation. Indeed, since we consider a driftless process, the expectation of any future

value of the process coincides with the current observed value, but comes at a cost. In

expectation, it is not worthwhile.9 The use of recall is present in applications. For example,

De los Santos et al. (2012) report online customers returning to sales platforms visited

earlier in their search.

4 Optimal Retrospective Search

4.1 The Optimal Policy

In principle, the agent has two dimensions to consider at any point in time t: the maximum

observed so far Mt, and the current outcome Xt. Her chosen search speed may therefore

depend on both.

The agent’s optimal policy is governed by a stopping boundary g(M) that determines,

for each observed maximal value, how low outcomes can go before the agent becomes

sufficiently pessimistic to stop searching. That is, the agent continues searching as long as

she observes outcomes above g(M) and stops at τ∗ given by:

τ∗ = inf{t ≥ 0 : g(Mt) ≥ Xt}.

Naturally, g(M) depends on the features of the process: both exogenous and endoge-

nous. That is, holding all of our environment’s parameters fixed, g(M) depends on the (en-

dogenous) choice of the search speed, the agent’s control. That dependence is non-trivial:

the optimal stopping boundary would change were search speed very low or very high.

For very low search speeds, the agent would want to stop quickly as there is not much to

gain from costly search. For very high search speeds, continuation is prohibitively costly

and the agent would terminate search rapidly as well. For intermediate levels of search

speeds, the agent may benefit from non-trivial search.

Let T[a,b] denote the first time a standard Brownian motion (with instantaneous vari-

ance of 1) escapes an interval [a,b]. Naturally, this time depends on the initial observation

in [a,b]. We denote by E
(
e−rT[a,b] |X

)
the corresponding expected discounted time with an

initial observation X ∈ [a,b]. We soon describe it explicitly. Proposition 1 fully character-

izes the optimal search policy.

9Risk attitudes would only make search outcomes less appealing and would not alter this conclusion.
Adding drift to the governing process would still generate extreme behaviors. For drift lower than the search
costs, there would be immediate stopping. For drift high enough, the agent would search indefinitely.
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Proposition 1 (Optimal Search Speed). For any continuous stopping boundary g(M), the
optimal search speed σ r(M,X) solves:

2c(σ r(M,X))
c′(σ r(M,X))

E
(
e−rT[g(M),M] |X

)
= σ r(M,X).

The fact that both costs and marginal costs impact the optimal solution is to be ex-

pected. Indeed, there are effectively two margins our agent considers. The first corre-

sponds to the instantaneous search speed, minute changes in which affect the marginal

cost. The second corresponds to the length of search, minute changes in which affect the

flow cost. When costs are strictly convex, the agent’s objective is strictly concave, and there

is a unique optimal policy. Nonetheless, in general, there could be multiple solutions of

the fixed-point equation in the proposition.10 When the left-hand-side of the equation is

monotonically decreasing, say when costs are log-convex, a unique fixed-point solution is

guaranteed.

The proposition suggests that the speed of search changes throughout the search path:

optimal search speeds are adjusted as new discoveries are made. This observation bears

empirical implications. A large literature in operation management focuses on product

development speed and its link to outcomes (see the meta-studies of Chen et al., 2010

and Cankurtaran et al., 2013). Our analysis suggests that naively considering correlations

between outcomes and a snapshot of development speeds may yield misleading results.

We now describe the precise dependence of the optimal search speed on the status of

search. The expected discounted time a standard Brownian takes to escape the interval

[g(M),M] starting from observation X can also be described explicitly:11

E
(
e−rTg(M),M |X

)
=

sinh
[
(M −X)

√
2r

]
+ sinh

[
(X − g(M))

√
2r

]
sinh

[
(M − g(M))

√
2r

]
Thus, σ r(M,X) is symmetric around (M +g(M))/2. In fact, we have the following corollary

to Proposition 1.

Corollary 1 (Features of Optimal Search Speeds). For any continuous stopping boundary
g(M) and any r > 0, the optimal search speed σ r(M,X) is symmetric around M+g(M)

2 , maximized
at the boundaries M and g(M) and minimized at M+g(M)

2 , and decreasing in r. When r = 0, the

10The value function can then be used to identify the optimal search speed among those solutions, see the
Appendix for details.

11The hyperbolic functions sinh and cosh are defined as follows:

sinh =
ex − e−x

2
and cosh =

ex + e−x

2
.

10



optimal search speed is constant, σ0(M,X) = σ0, and when interior, solves:

2c(σ0)
c′(σ0)

= σ0.

Furthermore, σ r(M,M) = σ r(M,g(M)) = σ0 for any r > 0 and M.

With non-trivial discounting, the optimal search-speed is U -shaped. The agent re-

sponds to details of her environment, searching more rapidly when nearing a breakthrough—

namely, when a new maximum is likely to be achieved in a short horizon—or when recent

results are discouraging and search breakdown is near. This observation provides a new

rationale for the so-called goal-gradient hypothesis, suggesting a tendency to exert greater

efforts when approaching a goal. A large body of experimental literature, going back Hull

(1932), provides evidence for the hypothesis. A recent explosion of work followed Kivetz

et al. (2006). The hypothesis has been used to explain effort patterns in a rich set of envi-

ronments, from marketing, to labor settings, to athletics. Much of this literature views the

effect as arising from deeply-ingrained psychological instincts.12 In contrast, the response

to nearing goals emerges in our model as the result of an optimal search protocol.

Absent discounting, the agent optimally chooses the search speed to be fixed at a level

independent of both global and local features of the process: the maximum value observed

and the samples recently observed. Certainly, many search units consider long activity

horizons and arguably exhibit less pronounced discounting. For example, while mineral

exploration teams can choose the speed of mine digging on their path, standard practices

since the 1950s dictate constant and pre-prescribed speed and depth of sampled wells,

independent of prior observations, see Zhilkin (1961). Similarly, in clinical trials for new

drugs, research suggests the use of a constant sample size for each consecutive dosage, see

Brock et al. (2017).

The intuition for Proposition 1 follows several steps. The first has to do with the im-

pacts of small changes in search speed on the attained maximum. Consider panel (a) of

Figure 1, depicting a situation where, at time τ , Xτ < Mτ . A small perturbation to the

search speed at τ does not impact the observed maximum Mτ . Thus, the chosen search

speed should depend only on the local process features, namelyXτ . What happens at times

τ in which Xτ = Mτ , as depicted in panel (b) of Figure 1? Our continuous-time formula-

tion implies that, within any infinitesimal interval of time, with probability 1, the agent

reaches a new value different from the current maximum.13 Formally, in Lemma A1 of

12For example, in a 2020 interview for Scientific American, Oleg Urminksy suggested a link between the
goal-gradient hypothesis and present bias.

13In fact, since we assume linear utility, when Xτ = Mτ , the agent is facing an analogous problem to that
faced by the agent at the outset of the process, at time 0. Whichever speed of search was chosen at time 0 is
then optimal at time τ .
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Figure 1: Independence of local choices on established maxima

the Appendix, we show that the controlled infinitesimal generator of the two-dimensional

process operating on any C2 function is almost surely equal to the controlled infinitesimal

generator of the one-dimensional process X operating on that function.

The above arguments indicate that a marginal change in search speed affects the value

of search only through its marginal impacts on local conditions. In particular, such a

marginal change has no impact on the maximal value attained. Changing the search speed

from 1 to σ at any small interval of time is tantamount to speeding up the (standard Brow-

nian) process by a factor of σ2. When there is no discounting, on a given path, the agent

effectively finds the efficient speed to hit the boundary g(Mt) or a new maximum, surpass-

ing Mt. This amounts to minimizing the cost per speed, or c(σ )/σ2. The corresponding

first-order condition yields the expression for σ0.

With discounting, the costs need to be adjusted. This adjustment is represented by the

scaling factor E
(
e−rTg(M),M |X

)
. Intuitively, when current observations are distant from either

the stopping boundary or the current maximum, foreseen costs close to a transition—

either to search termination or to a new maximum—are heavily discounted. The agent

then places a high weight on minimizing immediate costs, with less regard to speed. In

contrast, when close to the stopping boundary or to a breakthrough, discounting is of

less import and the agent places a high weight on the speed at which a transition will be

reached, much as in the undiscounted case. As the discount rate increases, and the agent

becomes more impatient, immediate costs play a more important role and the optimal

search speed declines. Naturally, the optimal stopping boundary changes for different

discount rates, which the following proposition characterizes.
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Proposition 2 (Optimal Stopping Boundary). The stopping boundary at any point t with a
previously observed maximumMt is given by: gr(Mt) =Mt−dr , where d0 = (σ0)2

2c(σ0) and dr solves:

dr

d0

(
1 + 2

sinh2(
√
r/2dr )

cosh(
√
r/2dr )

)
= 1.

Proposition 2 asserts that the stopping boundary corresponds to the currently-held

maximum of the process minus a fixed amount, which naturally depends on search costs.

Such stopping boundaries are often referred to as drawdown stopping boundaries, with the

defining fixed amount termed the drawdown size.

The optimal stopping boundary identified in Proposition 2 is consistent with search

strategies used in the field. For instance, it suggests that when prospecting for, say, oil,

excavating wells that appear worse than those observed in a region explored earlier should

limit additional excavation. Similarly, when seeking the optimal drug dosage in clinical

trials, evidence of severe side effects should limit exploration of larger dosages. In fact,

Thall and Cook (2004) prescribe an algorithm with a stopping policy resembling the one

we suggest.

The intuition for the drawdown nature of the optimal stopping policy is straightfor-

ward. Indeed, consider a process Yt = Xt + a, where a is a constant. Since utility is linear,

marginal considerations remain the same for this process and the optimal solution should

echo the one we analyze. In particular, the optimal stopping boundary g̃(M) must satisfy

g̃(M) = g(M − a). In other words, the optimal stopping boundary depends only on the

distance from the observed maximum.

While the intuition, and proof, of the structure of the optimal search speed does not de-

pend on the linearity of the agent’s utility, the argument for the optimality of a drawdown

stopping boundary most certainly does. In Section 6.1 and in the Supplementary Materi-

als, we discuss an extension to general concave utilities. Our techniques can be directly

extended, but the analysis becomes far more intricate. Nonetheless, for constant relative

risk aversion (CRRA) utilities with parameter ρ, assuming the utility from a maximal value

of M is captured by u(M) = M1−ρ

1−ρ , a closed-form solution for the stopping threshold can be

derived. Intuitively, as the agent becomes more risk averse, increasing ρ, the marginal

value of improving the already attained maximum declines, and the agent demands supe-

rior outcomes to continue searching. Furthermore, the stopping boundary is no longer a

fixed drawdown boundary. In particular, as the attained maximum increases, the marginal

value of an improvement decreases, and the agent is less likely to continue searching.

The precise derivation of the optimal drawdown size appears in the proposition’s proof.

Since the hyperbolic functions sinh and sinh
cosh are both increasing, we have:
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Figure 2: Features of the optimal search policy with r2 > r1 > 0

Corollary 2 (Optimal Retrospective Search without Discounting). The optimal drawdown
size dr is decreasing in r.

Figure 2 summarizes our characterization by displaying the shape of the optimal search

speed as a function of observed values for different discount rates (r2 > r1 > 0). As discount

rates increase, the agent becomes increasingly impatient and the value of future search is

lowered. Consequently, the agent is more inclined to stop and demands more promising

immediate discoveries to pursue search. The minimal search speed with any observed

maximumM, given by σ r(M, M+gr (M)
2 ), is also decreasing in r. Thus, more impatient agents

are less ambitious and quicker to quit.

Comparison with Independent Search When search is over independent samples, as

in the canonical models of Stigler (1961), McCall (1970), and Mortensen (1970), agents

cease search when sufficiently high values are realized. In contrast, when discoveries are

correlated, as in our setting, low realizations indicate that far more research is needed to

accomplish a breakthrough. Agents therefore stop when observing sufficiently low realized

values. Nonetheless, the optimal policy has a similar threshold flavor captured by the

drawdown size. In addition, while the characterization of the optimal search speed follows

similar lines, its closed-form solution is far less amenable to analysis, a point we return to
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when discussing agency frictions in search.14

Whether or not observations are correlated can affect conclusions from empirical stud-

ies of search behavior. For instance, in a classic paper, De los Santos et al. (2012) study

customers’ search for low book prices online. They assume platforms’ book prices are in-

dependent. Thus, customers searching sequentially should, in principle, stop their search

when observing sufficiently low prices and never recall prior observations. The data are

inconsistent with these patterns, leading the authors to conclude that consumers choose

their sample size statically. Our analysis suggests that true or perceived correlation across

platform prices should lead search to halt when a sufficiently high price is observed and

may entail recall, consistent with some of De los Santos et al. (2012)’s evidence.

4.2 Retrospective Search Outcomes

We now turn to the value of search, incorporating both the value of the implemented

project and the costs accrued throughout the search process.

Proposition 3 (Expected Values of Retrospective Search). For any r ≥ 0, the expected payoff
from optimal retrospective search is:

E(Πr ) =
dr

d0
sinh(

√
r/2dr )

√
2r

.

Since the process is symmetric, and can go up or down with equal probability, the agent

might hope to gain up to dr while searching. Formally, consider the difference between the

record-high level at time t and the observed value at time t, Mt −Xt. From continuity of

the Brownian motion, the optimal stopping policy implies that, if the agent stops at time

τ∗, Mτ∗ −Xτ∗ = dr . It follows that, for any realized stopping time τ∗,

E(Mτ∗ −Xτ∗ | τ∗) = dr .

Now, Xt is a martingale with expectation 0. Therefore, for any stopping time τ , E(Xτ | τ) =

0. It then follows that, for any t,

E(M∗τ ) = E(M∗τ |τ∗ = t) = dr .

In particular, how long it takes for retrospective search to run its course is not indicative

of the resulting expected value of the project.

14Suppose search is conducted over a path governed by independent draws from a standard normal dis-
tribution each period. The optimal control, translated into the optimal standard deviation of the normal is
given by maximizing R(σ ) = ψ−1(c(σ ))σ , where ψ(x) = φ(x)− x(1−Φ(x)), with φ and Φ representing the den-
sity and cumulative distribution of the standard normal, respectively. See Urgun and Yariv (2021) and our
Supplementary Materials for details.
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The costs of search naturally attenuate the expected value of the implemented alter-

native. Accounting for these costs is generally more involved. To glean some intuition,

consider the no-discounting case, where r = 0. Search duration is inversely proportional

to the search speed. In fact, expected search time is precisely the ratio of the squared

drawdown size and the speed of the process σ2; that is, E(τ∗) = (d0)2

σ2 .

Corollary 3 (Expected Values without Discounting). When r = 0, the expected project value
upon optimal stopping is E(M∗τ ) = (σ0)2

2c(σ0) and the expected optimal search duration is E(τ∗) =
(σ0)2

4c2(σ0) . Consequently, the expected payoff from optimal retrospective search is:

E(Π∗) = E(M∗τ )− c(σ ∗)E(τ∗) =
(σ0)2

4c(σ0)
.

Corollary 3 also highlights a subtle connection between the efficient search speed and

the optimal drawdown. Given any drawdown d, the efficient speed is constant and min-

imizes the cost per speed. Conversely, for any fixed search speed σ , reorganizing the

expectation in the corollary yields E(Π(d,σ )) = d − d2 c(σ )
σ2 . The optimal drawdown size

then depends on the search speed and, in turn, is maximized at the optimal search speed.

In this formulation, the optimization problem is reminiscent of a monopolist choosing a

“quantity” d, where the price is fixed at 1 and production costs are quadratic and given by

d2 c(σ )
σ2 . Viewed through this lens, investment in search speed is analogous to investment

in a reduction of production costs, which impacts quantity.15

When r = 0, natural comparative statics emerge. Suppose search speed is exogenously

fixed at a constant σ̂ with associated search cost of ĉ. Keeping the cost fixed, as search

speed increases, expected payoffs go up. Keeping the search speed fixed, as search costs go

up, expected payoffs go down. In what follows, we discuss comparative statics for general

search costs.

4.3 Comparative Statics

As Proposition 1 illustrates, the optimal policy depends both on the search cost’s level and

margins. We therefore need to impose further restrictions on cost functions in order to

generate clear comparative statics.

As already noted, when cost functions are log-convex, an interior solution is unique.16

Consider two log-convex cost functions c1(·) and c2(·) such that c2(x)
c′2(x) <

c1(x)
c′1(x) for all x. Denote

15With a unit price of 1, It is well-known from the monopolist’s quantity setting problem with quadratic
costs that the optimal profits correspond to precisely half the optimal quantity, which is reflected in the
proposition. Indeed, E(Π∗) = 1

2E(M∗τ ).
16The family of log-convex functions is rich and contains the family of exponential functions, Euler’s

Gamma function, etc.
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by σ ∗i and E(M∗i ) the optimal search speed and expected project value under cost function

ci(·) when r = 0. From Proposition 1, σ ∗1 > σ
∗
2 for any given stopping boundary. Costs affect

the stopping boundary as well. The impact on E(M∗i ) or, equivalently, on the expected

search payoff, depends on how the drawdown size changes. If c2(σ ∗2) > c1(σ ∗1), then search

is truly inhibited: it is optimally less ambitious and more costly per unit of time. In this

case, E(M∗1) > E(M∗2). However, if c2(σ ∗2) < c1(σ ∗1), the comparison is generally inconclusive.

To see the nuanced impacts of cost changes, consider the particular class of log-convex

cost functions, c(σ ) = exp(σγ ), with γ > 1, and suppose there is no discounting, r = 0. Our

discussion above suggests that the optimal search speed should decline with γ when γ is

sufficiently low, namely γ < 2e. Indeed, the optimal search speed σ ∗ =
(

2
γ

)1/γ
declines for

low values of γ and asymptotes at 1 as γ increases, see panel (a) of Figure 3. Notice that

σ ∗ > 1 whenever γ < 2 and σ ∗ < 1 whenever γ > 2. Since project values are governed by

a Brownian motion, for any stopping boundary characterized by a fixed drawdown, the

resulting maximal value is proportional to σ ∗, while the expected search time is inversely

proportional to the speed, captured by σ ∗2. Thus, for small γ , small increases in γ have a

greater impact on the expected search time, and therefore expected search costs, than on

the expected maximal value of the project. In particular, for small γ , the expected payoff
from retrospective search declines. The reverse occurs for larger γ .

Formally, from Corollary 3, the expected search time is given by E(τ∗) = 1
4

(
2
e2γ

)2/γ
,

which is increasing in γ and depicted in panel (b) of Figure 3. The expected project value

is given by E(M∗τ ) = 1
2

(
2
eγ

)2/γ
, which is double the expected payoff from search, and is non-

monotonic in γ . It is decreasing initially and then increasing indefinitely to an asymptote,

as depicted in panel (c) of Figure 3.

In other words, increases in log-convexity as defined above make the agent less ambi-

tious in terms of search speed, but also prolongs the search. Expected payoffs, however,

are non-monotonic. For low levels of γ , the benefits of ambition overwhelm those of the

length of search.

In general, a point-wise increase in the cost function or its marginals can lead to ei-

ther an increase or decrease in search speed. For example, suppose c̄(·) is defined by

c̄(σ ) = c(σ ) − w for all σ , where w ≥ 0. This corresponds to a case in which, say, a con-

stant flow wage of w is paid to the agent as long as she searches. The optimal search speed

corresponding to c̄(·) then satisfies:

σ ∗(w) =
2(c(σ ∗(w))−w)

c′(σ ∗(w))
.

Since the cost function c is convex, σc′(σ ) is non-decreasing. Hence, the impact of wages

on search speed need not be monotonic and depends on the cost function’s curvature.
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Figure 3: Impacts of cost changes when c(σ ) = exp(σγ )

5 Commissioned Retrospective Search

We now incorporate retrospective search into a moral hazard problem, considering com-

missioned search. We assume that a principal (she) contracts with an agent (he) who has

access to our retrospective search technology. The principal is the residual claimant of

search outcomes, but cannot conduct the search herself. This is often the case with re-

search and development teams that are separate from the main shareholders of a company.

The principal then cares about the outcome of the search, but does not experience its direct

costs. Similarly, artists often commission the sale of their pieces to galleries, which can ac-

cess a pool of potential buyers they can search through; and home-owners frequently use

the help of real-estate agents, who search for a buyer on their behalf.

In such settings, the principal knows whether the agent is on the job or not, but cannot

monitor the effort the agent exerts in his search or the resulting observed values. That

is, the principal observes neither the search speed σ nor the path of values {Xt}t. In this

setting, we can think of σt = σ , with the agent exerting the minimal speed, as the agent

shirking. For simplicity, we restrict our analysis to the case in which there is no discount-

ing for both the principal and the agent.

Certainly, if the principal can sell the project to the agent, agency frictions cease to

matter. However, in many applications that is not possible: individual researchers in-

frequently acquire universities or research labs, galleries do not always purchase the full
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portfolio of art they display, and real-estate agents do not buy the entire stock of houses

they represent. We therefore consider contractual relationships that do not entail owner-

ship transfers.

Specifically, we consider contracts that are comprised of a fixed wage w ∈R and a frac-

tion α ∈ (0,1] of the final search outcome. We call the combination of wage and fraction

a commission contract and denote it by (w,α). Commission contracts correspond to shar-

ing rules first considered by Aghion and Tirole (1994) and are commonplace in the field.

For instance, Jensen and Thursby (2001) report the licensing practices of 62 U.S. univer-

sities. Their data suggests the prevalence of commission contracts, namely agreements

based on fixed fees and royalties. In the realm of mineral exploration, the Securities and

Exchange Commission (SEC) reports on thousands of joint venture agreements between

investors and mining companies each year. These contracts often specify fixed and flow

fees throughout the search process, in addition to pre-agreed upon shares of the findings.17

If the agent does not work for the principal, he can take an outside option that offers

him u. For expositional simplicity, we assume this outside offer vanishes once the agent

contracts with the principal. While our analysis does not hinge on this assumption, we

believe it is realistic for many applications—e.g., employees who turn down offers can-

not reconsider them soon thereafter. As will hopefully become clear from our analysis,

however, if the agent prefers pursuing search over his outside option at the outset, he will

maintain this preference throughout the search process.

For simplicity, we assume X0 =M0 = 0. The principal’s problem is then:

max
w,α

E((1−α)Mτw,α − τw,αw)

s.t.τw,α ∈ arg max
τ,{σt}τt=0

E(αMτ −
∫ τ

0
[c(σt)−w]dt),

where dXt = σtdBt and Mt = max0≤s≤t(Xs ∨M0) as before.

5.1 The Agent’s Problem

We start by analyzing the agent’s optimal choices for any commission contract (w,α). In

any optimal contract, we must havew < c(σ ); otherwise, the agent would shirk indefinitely.

We therefore maintain that as an assumption.

Our benchmark case of an agent searching on his own, which we analyzed in Section

4.1, can be seen as a special case of an agent responding to a commission contract with

wage w = 0 and full remuneration for efforts in the form of an α = 1 share of the ulti-

mate maximal value found. Using similar techniques, we can find the characterization

17See https://www.sec.gov/edgar/search/ for a full set of reported contracts since 2001.
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generalizing Propositions 1 and 2:

Corollary 4 (Optimal Commissioned Search). With commission contract (w,α), the agent’s
optimal search speed is constant and solves:

σ ∗ =
2(c(σ ∗)−w)
c′(σ ∗)

if such a σ ∗ ≥ σ exists, and otherwise satisfies σ ∗ = σ . Furthermore, the stopping boundary
under contract (w,α) at any point t with a previously observed maximum Mt is given by:

g(Mt) =Mt −
α(σ ∗)2

2(c(σ ∗)−w)
.

Intuitively, a wage effectively shifts downward the search costs by a constant amount.

That is, the agent effectively considers a cost c̃(·) = c(·) −w. The formula for the optimal

search speed then follows directly from that identified in Proposition 1. The stopping

boundary, however, needs to be adjusted relative to that provided in Proposition 2, ac-

counting for the commission rate α. As α decreases, the agent would be more keen to stop.

In fact, as α becomes vanishingly small, the agent stops searching immediately.

One important feature of the optimal policy is that the search speed is fixed and inde-

pendent of the commission rate α offered. It solely depends on the wage w and the agent’s

private cost, which together define the flow search expenses. To some extent, this is to be

expected since, as Corollary 1 indicates, absent discounting, the optimal search speed is

independent of the maximal value obtained at any moment. Therefore, it should not be

sensitive to the commission awarded. Getting a smaller share of the pie still limits search,

however. The impact manifests only through the stopping boundary—if the agent gets a

small share, he is likely to stop searching sooner, but does not alter his search speed. Since

costs are convex, c′(σ )σ is non-decreasing in σ , and the impacts of wages depend on the

precise shape of the cost function.

In principle, the agent may choose a corner solution in terms of his search speed. How-

ever, regardless of search costs, the principal can always set the wages sufficiently high so

that the agent is induced to search at a greater, interior, speed. We note, however, that, in

general, wages may be low, even negative. Indeed, we do not impose any limited-liability

constraints. The inclusion of a lower boundary on admissible wages would not alter the

methods we present and, if anything, would make interior search intensities easier to sus-

tain optimally as wages would naturally be forced to be higher. We maintain no such con-

straints both for presentation simplicity and for realism. Indeed, it is not uncommon for

commissioned researchers to rent labs or testing equipment, cover various experimental
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outlays, etc.18 Such flow expenses would formally translate into negative wages.

We now turn to the returns of commissioned search resulting from the agent’s optimal

policy. For each commission contract (w,α), we can identify the expected payoff to both

the principal, denoted by E(ΠP
w,α), and the agent, denoted by E(ΠA

w,α). The precise formu-

lation of these expected payoffs naturally generalizes our characterization in Proposition

2. Naturally, the principal and agent get complementary shares of the pie. Furthermore,

their flow costs differ—the principal experiences a flow cost of w, while the agent experi-

ences a flow cost of c(σ ∗)−w.

Proposition 4 (Outcomes of Commissioned Search). The expected project value under a com-
mission contract (w,α) is E(Mτw,α ) = α(σ ∗)2

2(c(σ ∗)−w) and the expected search duration is E(τw,α) =(
α(σ ∗)

2(c(σ ∗)−w)

)2
. The expected returns for the agent and principal, respectively, are:

E(ΠA
w,α) = G(α,c(σ ∗)−w) and E(ΠP

w,α) = G(1−α,w),

where

G(β,φ) =
βα(σ ∗)2

2(c(σ ∗)−w)
−φ

(
α(σ ∗)

2(c(σ ∗)−w)

)2

.

5.2 The Principal’s Problem

The characterization of the agent’s problem and the resulting expected payoffs to the prin-

cipal enter the principal’s optimization problem. Using the characterization of Proposi-

tions 2* and 3*, we can write the principal’s problem as follows:

max
w,α

E(ΠP
w,α) subject to σ ∗ =

2(c(σ ∗)−w)
c′(σ ∗)

.

Notice that σ ∗ is pinned down uniquely by a choice of w. In particular, if the principal

wants to induce a search speed of σ ≥ σ , the wage she needs to offer is:

w(σ ) = c(σ )− σc
′(σ )
2

.

We can then convert the principal’s problem into an unconstrained problem in which

she selects the commission share α and the constant search speed σ :

max
σ,α

(1−α)ασ
c′(σ )

−
(
c(σ )− σc

′(σ )
2

)(
α

c′(σ )

)2

.

18Labs, both in the hard sciences, such as the Marine Biological Lab at the University of Chicago, as well
as in the social sciences, such as the Oxford Experimental Lab, offer access to research resources at a fee.
Platforms such as scienceexchange.com offer online marketplaces for various aspects of research.
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If the principal engages with the agent at all, it must be the case that α ∈ (0,1) and the

optimal share chosen should satisfy a first-order condition. The search speed the principal

optimally targets should satisfy a first-order condition whenever interior. As a conse-

quence, we have the following characterization:19

Proposition 5 (Optimal Commission Contract). Whenever the principal’s optimal commis-
sion contract (w∗,α∗) guarantees an interior search speed, it satisfies:

w∗ = c(σ ∗)− σ
∗c′(σ ∗)

2
and α∗ =

σc′(σ ∗)
2c(σ ∗) + σc′(σ ∗)

,

where

σ ∗ =
4c(σ ∗)

c′(σ ∗) + σ ∗c′′(σ ∗)
.

Contracting with Independent Search When search is over independent samples, the

optimal commission contract is far less tractable. To our knowledge, it has not been in-

vestigated for general distributions of instantaneous values. As we show in the Supple-

mentary Materials, when (discrete) independent observations are normally distributed,

the optimal control σ depends on both the wage and the commission level. This contrasts

our setting, where the optimal control depends on flow wages alone. Intuitively, when

observations are independent, the agent stops search when the current search observation is

equal to the option value of continuing. Any instantaneous decision accounts for both the

wage, which affects net search costs, and the commission, which affects current and future

payoffs. The dependence is not amenable to analysis.20

As discussed in Section 4.3 and the previous subsection, general comparative statics

depend on details of the cost function and are challenging to characterize in general. In

what follows, we consider the special case of exponential costs in order to illustrate simply

how the optimal commission contract responds to the environment’s features.

5.3 Contracting with Exponential Search Costs

Suppose search costs are exponential, c(σ ) = ebσ , where b > 0. For the agent searching on

his own, the optimal constant search speed would be given by σNC = 2
b , see Proposition 1.

19The proof involves simple algebraic manipulations of the corresponding first-order conditions and is
therefore omitted.

20It is given by maximizing R(σ,w,α) = ψ−1( c(σ )−w
α )σ , where ψ(x) = φ(x)− x(1−Φ(x)), with φ and Φ repre-

senting the density and cumulative distributions of the standard normal, respectively.
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Using Proposition 5 above, the optimal commission contract (w∗,α∗) satisfies

w∗ = e
1
2 (
√

17−1) − 1
4

(√
17− 1

)
e

1
2 (
√

17−1) and α∗ =

√
17− 1

2
(

1
2

(√
17− 1

)
+ 2

) ≈ 0.438.

with induced search speed of σ ∗ =
√

17−1
2b .

The agent searches with higher speed when under a commission contract relative to

when searching on his own. Intuitively, higher wages shift costs down and induce the

agent to search at greater speeds, see Section 4.3. The principal therefore trades off the

time it takes the agent to search and the wages needed to induce the necessary speeds.

Costs being exponential simplifies dramatically the structure of the optimal contract. In

particular, wages are set so that the resulting instantaneous costs—and, in the exponential

case, the marginal costs as well—are independent of b. As a consequence, the optimal

commission and wages are both independent of the cost parameter b.

Proposition 4 suggests that the expected maximal value of the project is E[M∗τ ] ≈ 0.126
b2 ,

while the expected search duration is E[τ∗] ≈ 0.007
b2 . Thus, the overall expected maximum

and search duration are decreasing in the cost parameter b. The resulting expected payoffs

to the agent and the principal are then:

E(ΠA
w∗,α∗) =

(
31− 7

√
17

)2
e

1
2−
√

17
2(√

17− 1
)3
b2

and E(ΠP
w∗,α∗) =

(
3
√

17− 11
)
e

1
2−
√

17
2

4b2 .

In other words, with exponential costs, no matter the cost parameter, the agent receives

approximately 30% of the overall surplus through the commission contract.

With a single-agent’s retrospective search, Proposition 3 suggests an expected payoff
of E(Π∗) = 1

b2e2 ≈ 0.135
b2 . In contrast, the overall surplus generated by the agent and the

principal is −16(33
√

17−137)e
1
2 −
√

17
2

(
√

17−1)3
b2

≈ 0.103
b2 . Thus, with exponential costs, contractual frictions

come at a cost just shy of one quarter, or about 24%, of the surplus.

6 Conclusions and Discussion

This paper proposes a simple model of retrospective search. Agents—online shoppers,

politicians, geological survey teams, or medical drug developers—observe evolving op-

tions that are correlated over time. They have two decisions at each point: at what speed

to search and whether to stop and collect the maximal observed value. The optimal search

policy entails a U-shaped search speed. The optimal search speed is flatter, and less re-

sponsive to recent discoveries, the more patient the agent is. Absent discounting, it is

constant. There is a simple optimal stopping boundary: a retrospective searcher ceases
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search whenever the observed value is a certain fixed and constant distance below the

maximal value observed. That fixed value is declining in the discount rate. Our charac-

terization of the optimal policy offers an array of comparative statics and is amenable to

embedding in a variety of applications. Specifically, we illustrate a principal-agent appli-

cation in which the principal—an innovator, an artist, a home seller, etc.—cannot perform

the search herself, but can contract with an agent—a university, an art gallery, a real-estate

agent, and the like—to conduct the search. We fully characterize the optimal commission

contract, comprised of a search wage and a commission, a pre-specified fraction of the

final project returns. The resulting speed of search depends only on the wage, while the

induced stopping boundary depends on both the wage and the commission. When speed

of search entails exponential costs, we show that contractual frictions come at a cost of

roughly one quarter of the surplus.

We hope our framework is useful for many search processes that exhibit intertemporal

or spatial correlations, from mineral excavation, to policy experimentation, to online com-

merce. In what follows, we discuss several natural extensions of our benchmark model,

inspecting the role of risk attitudes and drift.

6.1 Risk Aversion

As mentioned in Section 4.1, when considering optimal retrospective search, the intuition,

and proof, for the features of the optimal search speed do not depend on the linearity of

the agent’s utility. The characterization of the optimal speed remains virtually identical to

that pertaining to the risk-neutral case. Nonetheless, the characterization of the optimal

stopping boundary changes and, in general, need not be characterized by a drawdown

stopping boundary.

Absent a particular functional form for the utility, it is difficult to analytically char-

acterize the optimal stopping boundary. Why is that? When the agent hits the boundary

and stops search, her continuation value coincides with the precise value of the stopping

boundary. In fact, standard results imply what is often termed a smooth-pasting condi-

tion, whereby the stopping boundary and the continuation value coincide smoothly, with

all their derivatives agreeing. For simplicity, suppose r = 0. The smooth-pasting condition

generates an ordinary differential equation (ODE) of the following form. For any well-

behaved utility function u, and achieved maximum M, the optimal stopping boundary

g(·) satisfies:

g ′(M) =
(u′(M)) (σ ∗)2

2c(σ ∗)(M − g(M))
.

In fact, analysis following Peskir (1998) illustrates that the optimal stopping bound-
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ary is the maximal solution g(M) ≤M satisfying this ODE. This is a non-linear and non-

homogeneous ODE. When u′(M) is a constant, as in the body of the paper, it is easily

solvable. In general, we show in the Supplementary Materials that it ties to a well-known

class of ODEs, Abel’s equation of the second kind (see, e.g., Murphy, 2011). The general solu-

tion for this class of ODEs has been an open question for nearly 200 years. Nonetheless, for

particular functional forms, such as those corresponding to constant relative risk aversion

(CRRA) utilities, we can derive analytical solutions using recent developments in mathe-

matics, particularly the parametric solution in Panayotounakos and Kravvaritis (2006). In

the Supplementary Materials, we offer some general guidance on the techniques required

to solve for optimal retrospective search policies with non-linear utilities.

For illustration, consider the class of CRRA utilities with parameter ρ, where utility

from a maximal value of M is captured by u(M) = M1−ρ

1−ρ and assume M0 ≥ 1 so that agents

are indeed risk averse. There is always a level M̄ such that whenever the maximal ob-

served value M exceeds M̄, the agent stops her search immediately. Intuitively, at M̄, the

marginal returns from increasing the reward are overwhelmed by the marginal costs that

search entails. Furthermore, as the degree of risk aversion ρ increases, the correspond-

ing level M̄ decreases—as the agent becomes more risk averse, increasing ρ, the marginal

value of improving the already attained maximum declines and the agent becomes more

demanding when deciding whether to continue search. The stopping boundary for levels

M ≤ M̄ can also be derived. However, it is no longer characterized by a fixed drawdown.

As the attained maximum increases, the marginal value of an improvement decreases, and

the agent is less keen to continue searching.

6.2 Allowing for Drift

Throughout the paper, we assume the path of discovery has no drift. We do so for two

reasons. First, it suits the search applications we have in mind: when looking for new

wells, the right drug dosages, products to acquire, etc., the mere passage of time does not

generally improve values absent any effort. Second, the no-drift assumption simplifies our

presentation. Having said that, with a fixed drift and search speed, our analysis remains

virtually identical. The stopping boundary does need to be adjusted, however, with greater

drifts associated with more lenient stopping boundaries: with a substantial drift, the agent

has a strong incentive to continue searching.

One could also contemplate an agent controlling the drift, instead of the search speed,

as considered by Peskir (2005). That turns out to generate results with a bang-bang nature.

Namely, the agent always prefers higher drift, and the problem boils down to a simple

calculus comparing costs with benefits. For small enough costs, the searcher chooses the

maximal possible drift. For high enough costs, the searcher dispenses with drift.
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A Proofs of Main Results

A.1 Background to General Stopping and Control Problems

In this section, we provide a heuristic derivation of the Hamilton-Jacobi-Bellman (HJB)

equation for the general stopping and control problem.

We consider an underlying Weiner process Xt that has 0 drift and standard deviation

σ , which is controlled by the agent. For simplicity, we assume, as in the paper, that X0 = 0.

We start with the undiscounted problem. Let Zt = (Mt ,Xt) and let V (Zt) denote the

continuation value for a slightly more general problem, where the utility function u is not

necessarily linear, but is a uniformly Lipschitz continuous function that is twice differen-

tiable with u(0) = 0.

V (Zt) = max
τ,{σt}τt=0

E(u(Mτ )−
∫ τ

0
c(σ )dt|Zt = Z).

Since the Brownian motion has independent increments, excluding the point in time t

of consideration from the state description is without loss of generality. In particular, it

suffices to consider the optimization at t = 0.

At any instance, the agent has two options: stop or continue. If the agent stops, she

receives u(Mt); if she continues, she receives V (Zt) = V (Mt ,Xt). Thus, it is optimal to stop

whenever u(M) ≥ V (M,X). If the agent does not stop, she chooses a search speed σ at a

cost c(σ ). For a heuristic derivation, assume that the agent chooses either an optimal fixed

σ for a small amount of time dt, or stops immediately. Then, the dynamic programming

principle yields:

V (Mt ,Xt) = max
{
u(Mt),max

σ
{−c(σ )dt +E(V (Mt+dt ,Xt+dt |σ,Mt ,Xt))}

}
.

Equivalently,

V (Mt ,Xt) = max
{
u(Mt),max

σ
{−c(σ )dt +E(V (Mt ,Xt) + d(V (Zt |σ )))}

}
.

Let Bt denote the standard Brownian motion, with no drift, and instantaneous variance

of 1. The drift of the underlying process and the choice of search speed σt at any point

t induce instantaneous drift and standard deviations of the maximum value observed,

denoted by µM(Mt ,Xt ,σt) and σ̃M(Mt ,Xt ,σt).21 Furthermore, we denote by σ̃M,X(Mt ,Xt ,σt)

the induced instantaneous covariance between Mt and Xt. By Ito’s lemma, and dropping

21Standard arguments imply that the instantaneous drift and variance of the maximum do not depend on
historical levels of the agent’s control, the past values of the observed process, or prior maximum values.
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arguments whenever no confusion is caused, we have

dV (Zt) =
[
∂V
∂M

µM +
1
2

(
∂2V

∂M2 σ̃
2
M + 2

∂2V
∂M∂X

σ̃M,X(Mt ,Xt ,σt) +
∂2V

∂X2 σ
2
)]
dt+(

∂V
∂M

σ̃M +
∂V
∂X

σ

)
dBt .

The multiplier of dt is generally called the controlled infinitesimal generator of the process

Z applied to the function V , and denoted byAσZV (Zt). In what follows, it will be useful to

denote AσZV (Zt) =AσMV (Zt) +AσXV (Zt) + ∂2V
∂M∂X σ̃M,X(Mt ,Xt ,σt), where

AσMV (Zt) =
∂V
∂M

µM +
1
2
∂2V

∂M2 σ̃
2
M , and

AσXV (Zt) =
1
2
∂2V

∂X2 σ
2.

Since the Brownian motion has expectation of 0 at any instance, the dBt term in the

sum above falls out in expectation, and we can write the equation succinctly as follows:

V (Mt ,Xt) = max
{
u(Mt),max

σ

[
−c(σ ) +V (Mt ,Xt) +AσZV (Zt)

]}
.

Subtracting V (M,X) from both sides and noticing that maximization over σ has no bearing

on the already observed maximum value M, allows us a simplification:

0 = max
σt
{u(Mt)−V (Zt),A

σt
Z V (Zt)− c(σt)}. (1)

This last equality is the Hamilton-Jacobi-Bellman (HJB) equation.

If V (Zt) > u(Mt), it is strictly optimal to continue. Therefore, in that region, the term

AσtZ V (Zt) − c(σt) governs the agent’s decisions. If, however, V (Zt) < u(Mt), it is strictly

optimal to stop. The region in which V (Zt) = u(Mt) defines the stopping boundary. This

equality implicitly defines X as a function of M at the stopping boundary. It is useful to

write the stopping boundary as the set {(X,M) : X = g(M)} for the corresponding function

g(·). By definition, at the boundary, we have V (g(Mt),Mt) = u(Mt). This is often referred

to as value matching.

Since u is Lipschitz continuous and σ is chosen from a compact interval, it follows

that V (Z) = V (M,X) is smooth (see, e.g., Yong and Zhou (1999), page 42, Theorem 6.3,

and page 275, Theorem 6.2). This implies what is often termed smooth pasting, namely

Vx(g(M),M) = ux(M) = 0.22 In particular, this implies that the stopping boundary g(·) is

differentiable.

While the HJB necessarily holds at an optimal continuous solution, the reverse is not

22The smooth-pasting condition, together with our smoothness assumptions on the utility u, imply that, in
fact, the function g is differentiable, which we use below.
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guaranteed in general. For the cases analyzed in this paper, the reverse indeed holds using

standard, textbook verification results (see, e.g., Yong and Zhou (1999), pages 277-278,

Theorem 6.6, Case 1).

The HJB above is derived without a discount factor, but discounting effectively trans-

lates into a termination rate of the process X, often referred to as the killing rate. The

discounted problem is very closely related to the undiscounted problem as noted in Chap-

ter 5 of Itô, Henry Jr, et al. (2012) and Chapter 2 of Borodin and Salminen (2012).

Consider the discounted search problem with discount rate r > 0. That is, consider an

agent facing the following optimization problem:

max
τ,{σt}τt=0

E
[
e−rτu(Mτ )−

∫ τ

0
[e−rtc(σt)]dt

]

It is well known (Peskir and Shiryaev (2006), chapters 5.4 and 6.3) that for any finite

stopping time τ , and any continuous function c(·), the above problem can be equivalently

defined for the process Ẑ = (M̂, X̂), the process Z = (M,X) killed at rate r:

max
τ,{σt}τt=0

E
(
u(M̂τ )−

∫ τ

0
[c(σt)]dt

)
.

We state the following facts about the relationship between the killed process and the

unkilled one. A more detailed discussion of these facts can be found in Borodin and Salmi-

nen (2012) (pages 27-28). The proofs can be found in various sources including Itô et al.

(2012) (pages 179-183).

1. The scale function and the speed measure of the killed process X̂ equal the scale

function and the speed measure of the unkilled process X.23

2. The (controlled) infinitesimal generator of the process Ẑ = (M̂, X̂), denotedAẐ , equals

AẐ =AZ − r.

Since the non-killed state space of Ẑ and Z are the same, from here onwards, with a

slight abuse of notation, we drop the hats and represent the HJB equation as follows:24

23Recall that the scale function of a generic diffusion with drift µ variance σ is given by: S(x) =∫ x
0 e
−
∫ y
0

2µ(z)

(σ (z))2
dz
dy. and the speed measure of the same diffusion is given by m(dx) = 2dx

S ′(x)(σ (x))2 .

When the drift is equal to 0 the process is in the so called "natural scale" with S(x) = x and m(dx) = 2dx
(σ (x))2

24The HJB equation with discounting is usually directly derived by simply including the time derivative
of the value function while applying Ito’s lemma. It usually includes a normalization that leads directly to
the second line up to normalization. Here, we use the killed process instead of normalizing to utilize the
connection between the killed and unkilled diffusions.
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0 = max
σt
{u(Mt)−V (Zt),A

σt
Ẑ
V (Zt)− c(σt)}.

0 = max
σt
{u(Mt)−V (Zt),−rV (Zt) +AσtZ V (Zt)− c(σt)}.

A.2 Reducing Dimensionality

The following lemma, which we use throughout our analysis, suggests that a marginal

change in search speed affects the value of search only through its marginal impacts on

local conditions.

Lemma A1 (Reducing Dimensionality) The infinitesimal generator satisfies the following:

1. If Mt > Xt, then AσtZ =AσtX = 1
2 (σt)2 ∂2

∂X2 .

2. If Mt = Xt, then ∂V
∂M = 0.

That is, at any t, an infinitesimal change in the search speed, the control, σt has no effect via the
current maximum Mt.

For completeness, we provide a proof below. Alternative proofs of Lemma A1, com-

monly known as “reflection on the diagonal,” can be found in various sources, including

Dubins, Shepp, and Shiryaev (1994).

Proof of Lemma A1:

For part 1, whenever Mt > Xt, an infinitesimal change in Xt has no effect onMt and the

formula for AσtZ follows. The formula for AσtX follows directly from the definition since, in

our environment, the governing process has no drift.

For part 2, it is sufficient to show that for any C2 function W of Z, for any t such that

Xt =Mt,
∂W (Mt ,Xt)

∂M = 0.

Suppose the observed value at a date normalized to 0 coincides with maximal value:

X0 = M0 = M. For any t, consider W (Mt ,Xt). In line with our description in Section A.1

above, applying Ito’s formula and taking expectations,

EM,M (W (Mt ,Xt)) =W (M,M) +EM,M

(∫ t

0
AσrXW (Mr ,Xr )dr

)
+EM,M

(∫ t

0

∂W (Mr ,Xr )
∂M

dMr

)
+

1
2
EM,M

(∫ t

0

∂W (Mr ,Xr )
∂M∂X

d⟨Mr ,Xr⟩+
∫ t

0

∂2W (Mr ,Xr )
∂M2 d⟨Mr ,Mr⟩

)
.

Consider the terms involving the quadratic variation and quadratic covariance of M, the

last two terms in the formula above. Since Mt is (weakly) increasing over any time inter-

val, it has bounded variation, and thus has 0 quadratic variation. Therefore, those terms
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vanish. Dividing both sides by t, we have:

EM,MW (Mt ,Xt)−W (M,M)
t

=
1
t
EM,M

(∫ t

0
AσrXW (Mr ,Xr )dr +

∫ t

0

∂W (Mr ,Xr )
∂M

dMr

)
.

Taking the limit as t → 0, by Dynkin’s formula, the left-hand side converges to the in-

finitesimal generator of Z. The first term on the right-hand side reduces to the infinites-

imal generator of X. Furthermore, ∂W (Mr ,Xr )
∂M dMr is the first-order term in the Taylor ap-

proximation of our function W and, hence, coincides with ∂W (M,M)
∂M

(
limt→0

EM,M (Mt−M)
t

)
.

Therefore,

AσrZW (Mr ,Xr )dr) =AσrXW (Mr ,Xr )dr) +
∂W (M,M)

∂M

(
lim
t→0

EM,M(Mr −M)
t

)
.

From the Reflection Principle, EM,M(Mt−M) is of the order
√
t. It follows that limt→0

EM,M (Mt−M)
t

goes to infinity. Therefore, it must be that ∂W (M,M)
∂M = 0 for any C2 function, including V .■

Recall the HJB identifying the solutions to our problem, equation (1). The second

term corresponds to the continuation choice of search. From Lemma A1 above, we can

substitute AX for AZ . Our HJB can then be written as follows:

0 = max
σt
{u(Mt)−V (Zt),−rV (Zt) +

1
2

(σt)
2∂

2V (Zt)
∂X2 − c(σt)}. (2)

A.3 Proofs

We proceed in two steps. First, we illustrate a recursive formulation of the value function.

Using Lemma A1, we identify the optimal control. Then, in Lemma A2, we show that

the optimal stopping boundary can be derived as the solution of an ordinary differential

equation and provide its characterization. The optimal stopping boundary for linear util-

ities is described in our proof of Proposition 2, while the solutions for CRRA utilities and

logarithmic utilities are relegated to the Supplementary Materials.

Let
{
F Xt

}
t

denote the filtration generated byX. A control adapted to
{
F Xt

}
t

, also termed

feedback control, is a control that is measurable with respect to the filtration
{
F Xt

}
t
. We

often omit the explicit reference to the filtration generated by X and refer to such a control

as an adapted control. Denote by X[0,t] the full path of Xs in the time interval [0, t], namely

{Xs|s ∈ [0, t]}.
Let σ rt be an arbitrary adapted control when the discount rate is r. For notational

simplicity we will suppress r until the final representation and use σ instead. Consider

the following problem of choosing an optimal control and optimal stopping for the killed
process (Mt ,Xt), with killing rate r, allowing for general utility functions satisfying the
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smoothness restrictions imposed in Section A.1:

V (M,X) = sup
τ

E
[
u(Mτ )−

∫ τ

0
c(σt)dt

]
subject to

dXt = σtdBt .

As described in our background section, at the point of stopping, the agent’s utility

from the achieved maximum coincides with her continuation value: u(Mτ ) = V (Mτ ,Xτ ).

Furthermore, the stopping time has to be of the form τ∗ = inf{t ≥ 0 : Xt ≤ gr(Mt)} for some

differentiable function g and the optimal control takes the form of σ (M,X). Again, we

suppress r until the final representation and denote the stopping boundary by g(Mt). We

now use our simplified HJB equation, captured in (2) together with the smooth-pasting

restrictions to establish the following three constraints:

(σt)2

2
∂2V
∂X2 = c(σt)− rV for g(M) < x <M (Continuation Region)

V (M,X)|X=g(M) =M (Value Matching)
∂V (M,g(M))

∂X = 0 (Smooth Pasting).

Our next goal is to characterize σ (M,X) and g(·). Consider a stopping time of the form.

τg(M),M = inf{t ≥ 0 : Xt < (g(M),M)}.

This stopping time involves an upper bound, which we will use for a recursive descrip-

tion of the value function. The lower bound corresponds to our stopping boundary. For

any current pair (M,X), we are interested in

V (M,X) = E
(
V (Mτg(M),M

,Xτg(M),M
)−

∫ τg(M),M

0
[c(σ (Mt ,Xt))]dt|M,X

)
.

Start with the first term in this formulation, which captures the expected value from stop-

ping. In the stopping rule identified above, if the upper bound is reached, the agent con-

tinues her search and receives V (M,M). If the lower bound is reached, the agent receives

u(M). Until one of the bounds is reached, M remains constant so σ (M,X) can only vary

according to X.

Multiplying the outcomes in V (Mτg(M),M
,Xτg(M),M

) by their respective probabilities,

E(V (Mτg(M),M
,Xτg(M),M

)|M,X) = P (Xτg(M),M
=M |M,X)V (M,M)+P (Xτg(M),M

= g(M)|M,X)u(M).

From Revuz and Yor (2013) (pages 304-305, Theorem 3.6 and Corollary 3.8), for any

stopping rule of the form τa,b = τa ∧ τb, where τa = inf{t ≥ 0 : Xt = a} and τb = inf{t ≥ 0 :
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Xt = b}, for any a ≤ x ≤ b, we have

P (Xτa,b=a|M,X) =
S(b)− S(x)
S(b)− S(a)

=
b − x
b − a

, and (3)

P (Xτa,b=b|M,X) =
S(x)− S(a)
S(b)− S(a)

=
x − a
b − a

,

where S(x) denotes the scale function (which is in natural scale due to the lack of drift).

Using the formulations from equations (3), we can write:25

E(V (Mτg(M),M
,Xτg(M),M

)|M,X) = V (M,M)
X − g(M)
M − g(M)

+u(M)
M −X

M − g(M)
.

It is well known—again, see e.g. Revuz and Yor (2013)—that for any function f ,

E
(∫ τa,b

0
f (Xt)dt

∣∣∣∣∣X)
=

∫ b

a
f (y)Gra,b(X,y)m(dy), (4)

where m(dx) is the speed measure of the diffusion X defined above.

From equation (4), the second term in the formulation of V (M,X) can be written as:

E

(
−
∫ τg(M),M

0
[c(σ (xt))]dt

∣∣∣∣∣M,X) = −
∫ M

g(M)
Grg(M),M(X,y)(c(σ (M,y)))m(dy).

Thus,

V (M,X) = u(M)
M −X

M − g(M)
+V (M,M)

X − g(M)
M − g(M)

−
∫ M

g(M)
Grg(M),M(X,y)(c(σ (M,y)))m(dy). (5)

Reorganizing the above,

V (M,M)−u(M) =
M − g(M)
X − g(M)

(
V (M,X)−u(M) +

∫ M

g(M)
Grg(M),M(x,y)(c(σ (M,y)))m(dy)

)
.

We can now use the smooth-pasting conditions to pin down V (M,X).

Letting x approach g(M), we have

lim
X→g(M)

(V (M,X)−u(M))
(X − g(M))

M − g(M) = VX(M,g(M))(M − g(M)).

By smooth pasting, VX(M,g(M)) = 0.

From Borodin and Salminen (2012) (Appendix 1, page 105), the Green’s function of

25Conditioning on values ofM or X implies these are the current values of the maximum value or the search
observation, respectively.
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the exponentially killed Brownian motion is given by:

Grg(M),M(X,y) =


sinh(

√
2r(M−X))sinh(

√
2r(y−g(M)))√

2r sinh(
√

2r(M−g(M)))
if M >X > y > g(M)

sinh(
√

2r(M−y))sinh(
√

2r(X−g(M)))√
2r sinh(

√
2r(M−g(M)))

if M > y > X > g(M)
.

Taking the limit as X approaches g(M) and using the smooth-pasting conditions,

V (M,M) = u(M) + (M − g(M))
∫ M

g(M)

sinh(
√

2r(M − y))

sinh(
√

2r(M − g(M)))

2c(σ (M,y))
σ (M,y)2 dy. (6)

We can then plug this back into (5) with the appropriate Green’s function to get

V (M,X) = u(M) + (X − g(M))
∫ M

g(M)

sinh(
√

2r(M − y))

sinh(
√

2r(M − g(M)))

2c(σ (M,y))
σ (M,y)2 dy (7)

−
∫ M

g(M)
Grg(M),M(X,y)

2c(σ (M,y))
σ (M,y)2 dy.

Proof of Proposition 1: Consider the continuation part of the HJB,

sup
σt
{AσtZ V (Zt)− c(σt)− rV (Zt)}.

Using Lemma A1, this reduces to:

sup
σt
{
σ2
t

2
∂2V (M,X)

∂X2 − c(σt)− rV (Zt)}.

Replacing the supremum with the appropriate first-order condition,

0 = σ (M,X)
∂2V (M,X)

∂X2 − c′(σ (M,X)).

Given its closed-form description, we can then take the second derivative of V (M,X)

with respect to X:

∂2V (M,X)
∂X2 =

2c(σ (M,X))
σ (M,X)2 −

∫ M

g(M)
2rGrg(M),M(X,y)

2c(σ (M,y))
σ (M,y)2 dy.

We can plug this into the first-order condition above to get:

σ (M,X)
(

2c(σ (M,X))
σ (M,X)2 −

∫ M

g(M)
2rGrg(M),M(X,y)

2c(σ (M,y))
σ (M,y)2 dy

)
= c′(σ (M,X)).

In order to find the general solution, we re-arrange the continuation HJB as follows:

2c(σ (M,X))
σ (M,X)2 − c

′(σ (M,X))
σ (M,X)

=
∫ M

g(M)
2rGrg(M),M(X,y)

2c(σ (M,y))
σ (M,y)2 dy (8)
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Integrating both sides over X between g(M) and M, we achieve:∫ M

g(M)

(
2c(σ (M,X))
σ (M,X)2 − c

′(σ (M,X))
σ (M,X)

)
dX =

∫ M

g(M)

∫ M

g(M)
2rGrg(M),M(X,y)

2c(σ (M,y))
σ (M,y)2 dydX.

We can change the order of integration on the right-hand side. We can also factor out
2c(σ (M,y))
σ (M,y)2 :∫ M

g(M)

(
2c(σ (M,X))
σ (M,X)2 − c

′(σ (M,X))
σ (M,X)

)
dX =

∫ M

g(M)

2c(σ (M,y))
σ (M,y)2 r

∫ M

g(M)
2Grg(M),M(X,y)dXdy.

By definition, the Green’s function is symmetric. That is, Grg(M),M(X,y) = Grg(M),M(y,X).

The inner integral is the integral of the Green’s function, with speed measure 1. Letting

T[g(M),M] denote the time for a standard brownian motion (corresponding to σ = 1) to

escape [g(M), M], we have:

r

∫ M

g(M)
Grg(M),M(X,y)2dx = rE

(∫
T[g(M),M]

0
e−rtdt|X

)
.

Therefore,∫ M

g(M)

2c(σ (M,y))
σ (M,y)2 rE

(∫
T[g(M),M]

0
e−rtdt|y

)
dy =

∫ M

g(M)

(
2c(σ (M,X))
σ (M,X)2 − c

′(σ (M,X))
σ (M,X)

)
dX.

The integrals are equal for every continuous g(M) and every c(σ ) if and only if they are

pointwise equal. Changing the integrand from y to X on the left-hand side yields:

2c(σ (M,X))
σ (M,X)2 rE

(∫
T[g(M),M]

0
e−rtdt|X

)
=

(
2c(σ (M,X))
σ (M,X)2 − c

′(σ (M,X))
σ (M,X)

)
.

Rearranging the terms produces:

2c(σ (M,X))
c′(σ (M,X))

(
1− rE

(∫
T[g(M),M]

0
e−rtdt|X

))
= σ (M,X).

Integration generates rE
(∫

T[g(M),M]

0 e−rtdt|X
)

= E(1−e−rT[g(M),M]), which simplifies the formula:

2c(σ (M,X))
c′(σ (M,X))

E(e−rT[g(M),M] |X) = σ (M,X).

Finally, the explicit expression for E(e−rT[g(M),M] |X) can be found in Borodin and Salminen

(2012), formula 3.0.1 (page 172):

E(e−rT[g(M),M] |X) =
sinh((M −X)

√
2r) + sinh(X − g(M)

√
2r)

sinh((M − g(M))
√

2r)
=

cosh((M + g(M)− 2X)
√
r/2)

cosh((M − g(M))
√
r/2)

.
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Putting this back into the previous formula yields:

2c(σ (M,X))
c′(σ (M,X))

sinh((M −X)
√

2r) + sinh(X − g(M)
√

2r)

sinh((M − g(M))
√

2r)
= σ (M,X).

A direct implication of this derivation is that σ (M,X) is symmetric around (M+g(M))/2.

Furthermore, cosh is minimized at 0, so the multiplier is 1 at the boundaries, and equals

1/ cosh(d
√
r/2) at the midpoint. It increases from the midpoint to the boundaries. Finally,

limr→0 E(e−rT[g(M),M] |X) = 1, which coincides with the values at the boundaries. Therefore,

σ r(M,M) = σ r(M,g(M)) = σ0(M,X) = σ0 is constant, and solves 2c(σ0)
c′(σ0) = σ0.

■

Proof of Proposition 2 and Corollary 2: The proof of Proposition 2 and Corollary 2 fol-

lows from the following lemma.

LemmaA2: The optimal stopping boundary solves the ordinary differential equation (ODE):

(g ′(M)− 1)


∫ M

g(M)

2c(σ (M,y))
σ (M,y)2

sinh
(√

2
√
r(y − g(M))

)
sinh

(√
2
√
r(M − g(M))

) dy (9)

+ (M − g(M))
∫ M

g(M)

√
2
√
r

2c(σ (M,y))
σ (M,y)2

cosh
(√

2
√
r(M − g(M))

)
sinh

(√
2
√
r(M − g(M))

) sinh
(√

2
√
r(y − g(M))

)
sinh

(√
2
√
r(M − g(M))

) dy
+ (M − g(M))g ′(M)

∫ M

g(M)

√
2
√
r

2c(σ (M,y))
σ (M,y)2

sinh
(√

2
√
r(M − y)

)
sinh2

(√
2
√
r(M − g(M))

) dy
− (M − g(M))

2c(σ (M,M))
σ (M,M)2 +u′(M) = 0.

Proof of Lemma A2: In order to calculate the optimal stopping boundary, we differentiate

equation (7) with respect toM, evaluate it at X =M, and set it equal to 0. Focus first on the

term
∫M
g(M)

sinh(
√

2r(M−y))
sinh(

√
2r(M−g(M)))

2c(σ (M,y))
σ (M,y)2 dy. We can change variables, shifting to ỹ =M+g(M)−y

and recalling that σ (M,X) is symmetric around (M + g(M))/2. Thus, σ (M,y) = σ (M,ỹ)

within the integral range. We can then equivalently write equation (7), accounting for the

sign change due to the variable replacement, as follows:

V (M,X) =u(M)− (X − g(M))
∫ M

g(M)

sinh(
√

2r(y − g(M)))

sinh(
√

2r(M − g(M)))

2c(σ (M,y))
σ (M,y)2 dy (10)

−
∫ M

g(M)
Grg(M),M(X,y)

2c(σ (M,y))
σ (M,y)2 dy.
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Taking the derivative with respect to M and evaluating it at X =M yields the following:

(g ′(M)− 1)


∫ M

g(M)

2c(σ (M,y))
σ (M,y)2

sinh
(√

2
√
r(y − g(M))

)
sinh

(√
2
√
r(M − g(M))

)sinh
(√

2
√
r(y − g(M))

)
dy

 (11)

+ (M − g(M))
∫ M

g(M)

√
2
√
r

2c(σ (M,y))
σ (M,y)2

cosh
(√

2
√
r(M − g(M))

)
sinh

(√
2
√
r(M − g(M))

) sinh
(√

2
√
r(y − g(M))

)
sinh

(√
2
√
r(M − g(M))

) dy
+ (M − g(M))g ′(M)

∫ M

g(M)

√
2
√
r

2c(σ (M,y))
σ (M,y)2

sinh
(√

2
√
r(M − y)

)
sinh2

(√
2
√
r(M − g(M))

) dy
− (M − g(M))

2c(σ (M,M))
σ (M,M)2 +u′(M) = 0.

As mentioned in the text, analysis following Peskir (1998) shows that the optimal stop-

ping boundary is the maximal solution g(M) ≤M satisfying this ODE. ■

The ODE in Lemma A2 is non-linear. In general, such ODEs are not straightforward to

solve in analytical form, even when r = 0, due to the presence of u′(M).26 Nonetheless, in

the Supplementary Materials, we illustrate this ODE’s reduction to an alternative ODE that

is more amenable to various classes of utilities studied in the economics literature when

r = 0, as well as its application to the case of CRRA utilities, where stopping boundaries

can be characterized analytically. In what follows, we solve this ODE directly for linear

utilities. Set u(M) =M, the case analyzed in the text.

First, observe that we must have M − gr(M) = dr for some dr . Towards a contradiction,

suppose this is not the case, so that there exist some M,A ∈ R such that M −gr(M) > M

+A− gr(M +A). From equation (6), we must have V (M +A,M +A)−V (M,M) , A. Now, if

V (M+A,M+A)−V (M,M) > A, then gr(M) is suboptimal; if V (M+A,M+A)−V (M,M) < A,

then gr(M +A) is suboptimal. We therefore get a contradiction.

Suppressing the r superscript for notational convenience, and using the fact that gr(M)

26Peskir (1998) identified an equivalent ODE for the case of search without control and without discounting.
He notes the difficulty in providing a general solution and states “to the best of our knowledge the equation...
has not been studied before, and... we want to point out the need for its investigation.”
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is linear in M (with a derivative of 1), we can simplify equation (11) to:

+ (M − g(M))
∫ M

g(M)

√
2
√
r

2c(σ (M,y))
σ (M,y)2

cosh
(√

2
√
r(M − g(M))

)
sinh

(√
2
√
r(M − g(M))

) sinh
(√

2
√
r(y − g(M))

)
sinh

(√
2
√
r(M − g(M))

) dy
+ (M − g(M))

∫ M

g(M)

√
2
√
r

2c(σ (M,y))
σ (M,y)2

sinh
(√

2
√
r(M − y)

)
sinh2

(√
2
√
r(M − g(M))

) dy
− (M − g(M))

2c(σ (M̂,M))

σ (M̂,M)2
+ 1 = 0.

Similar to the derivation of equation (10), we can introduce a change of variable for the

first term: ỹ =M + g(M)− y and use the identity 1
sinh(x) −

cosh(x)
sinh(x) = − sinh(x/2)

cosh(x/2) , yielding:

− (M − g(M))
sinh

(√
r/2(M − g(M))

)
cosh

(√
r/2(M − g(M))

) ∫ M

g(M)

√
2
√
r

2c(σ (M,y))
σ (M,y)2

sinh
(√

2
√
r(M − y)

)
sinh

(√
2
√
r(M − g(M))

)dy
(12)

− (M − g(M))
2c(σ (M,M))
σ (M,M)2 + 1 = 0.

Now, recall that the continuation HJB is:

2c(σ (M,X))
σ (M,X)2 − c

′(σ (M,X))
σ (M,X)

=
∫ M

g(M)
2rGrg(M),M(X,y)

2c(σ (M,y))
σ (M,y)2 dy.

We can divide both sides by X −g(M) and take the limit as X goes to g(M). The right-hand

side converges to:

√
2r

∫ M

g(M)

√
2
√
r

2c(σ (M,y))
σ (M,y)2

sinh
(√

2
√
r(M − y)

)
sinh

(√
2
√
r(M − g(M))

)dy.

For the left-hand side, we use L’Hopital’s rule to identify its limit as:(
2c(σ (M,X))
σ (M,X)2 − c

′(σ (M,X))
σ (M,X)

)
−σX(M,X)
σ (M,X)

− σX(M,X)
σ (M,X)

c′′(σ (M,X))

∣∣∣∣∣∣
X=g(M)

.

The first term in the parentheses equals 0 at X = g(M) by Proposition 1. To calculate

σX(M,X), we use the identity

2c(σ (M,X))
c′(σ (M,X))

E(e−rT[g(M),M] |X) = σ (M,X).

Let T(X) = E(e−rT[g(M),M] |X). Taking the derivative of both sides with respect to X and
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simplifying yields:

2c(σ (M,X))c′(σ (M,X))T′(X)
c′(σ (M,X))2(1−T(X)) + c(σ (M,X))c′′(σ (M,X))T(X)

= σX(M,X).

By definition, T(g(M)) = 1 and T′(g(M)) = −
√

2r sinh(
√
r/2(M −g(M)). Plugging these back

in and simplifying further yields:

2c′(σ (M,g(M)))
σ (M,g(M))

sinh(
√
r/2(M − g(M))

=
∫ M

g(M)

√
2
√
r

2c(σ (M,y))
σ (M,y)2

sinh
(√

2
√
r(M − y)

)
sinh

(√
2
√
r(M − g(M))

)dy
Plugging this into equation (12),

− (M − g(M))
sinh

(√
r/2(M − g(M))

)
cosh

(√
r/2(M − g(M))

) 2c′(σ (M,g(M)))
σ (M,g(M))

sinh(
√
r/2(M − g(M))

− (M − g(M))
2c(σ (M,M))
σ (M,M)2 + 1 = 0.

As r approaches 0, the hyperbolic terms vanish and we have, M − g0(M) = d0 = (σ0)2

2c(σ0) .

For positive r, we can use the fact that σ r(M,g(M)) = σ0 to identify the drawdown size

dr =M − gr(M):

dr

d0

1 + 2
sinh

(√
r/2dr

)
cosh

(√
r/2dr

) sinh(
√
r/2dr )


=
dr

d0

(
1 + 2

sinh2(
√
r/2dr )

cosh(
√
r/2dr )

)
= 1.

Since both sinh and tanh are increasing in r, this implies that the optimal drawdown dr =

M − g(M) is decreasing in r. ■

Proof of Proposition 3: Recall that when u(M) =M, equation (5) is given by:

V (M,X) =M + (X − g(M))
∫ M

g(M)

sinh(
√

2r(M − y))

sinh(
√

2r(M − g(M)))

2c(σ (M,y))
σ (M,y)2 dy

−
∫ M

g(M)
Grg(M),M(X,y)

2c(σ (M,y))
σ (M,y)2 dy.

From the proof of proposition 2, we know that
∫M
g(M)

sinh(
√

2r(M−y))
sinh(

√
2r(M−g(M)))

2c(σ (M,y))
σ (M,y)2 dy =
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2c′(σ (M,g(M)))
σ (M,g(M))

sinh(
√
r/2(M−g(M))√

2r
. Plugging this in, the value function can be written as:

V (M,X) =M + (X − g(M))
2c′(σ (M,g(M)))
σ (M,g(M))

sinh(
√
r/2(M − g(M))
√

2r

−
∫ M

g(M)
Grg(M),M(X,y)

2c(σ (M,y))
σ (M,y)2 dy.

Similarly, from equation (8), we have

2r
∫ M

g(M)
Grg(M),M(X,y)

2c(σ (M,y))
σ (M,y)2 dy =

2c(σ (M,X))
σ (M,X)2 − c

′(σ (M,X))
σ (M,X)

.

Therefore, we can write the value function as:

V (M,X) =M + (X − g(M))
2c′(σ (M,g(M)))
σ (M,g(M))

sinh(
√
r/2(M − g(M))
√

2r
−

2c(σ (M,X))
σ (M,X)2 −

c′(σ (M,X))
σ (M,X)

2r
.

Recall that σ (M,M) = σ (M,g(M)) = σ0, where σ0 is the undiscounted optimal search

speed. From the HJB, we know that 2c(σ (0,0))
σ (0,0)2 −

c′(σ (0,0))
σ (0,0) = 0. Thus,

V (0,0) = (0− g(0))
2c′(σ (0, g(0)))
σ (0, g(0))

sinh(
√
r/2(0− g(0))
√

2r
.

In general, we can write the above in terms of the drawdowns by noting that dr = 0− g(0):

V (0,0) =
dr

d0
sinh(

√
r/2dr )

√
2r

.

■

Proof of Corollary 3: From Proposition 1, σ0 is constant and, from Proposition 2, the

optimal stopping time is a drawdown stopping time with drawdown size d0 = (σ0)2

2c(σ0) . Recall

that the optimal stopping time is:

τ∗ = inf
{
t ≥ 0 :Mt −Xt ≥ d0

}
.

Since σ0 is constant, from Taylor et al. (1975), the joint moment generating function and

Laplace transform of Xτ∗ and τ∗ is given by:

E[eXτ∗−c(σ
0)τ∗] =

βe−d
0

β cosh(βd0)− sinh(β)
,

where β =
√

2c(σ0)/(σ0)2.

The characterization of the distribution of Mτ∗ then follows since Mτ∗ = Xτ∗ + σ0

2c(σ0) .

Again, from Taylor et al. (1975), following conventional techniques, some moments as

well as the distributions of M∗τ and τ∗, are readily identified. In particular, in addition to
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V (M,X) that can be directly calculated via Proposition 3, we have

E(τ∗) =
(d0)2

(σ0)2 and E(M∗τ ) = d0and V (M,X) = d0/2.

Furthermore, the distribution of M∗τ is a standard exponential distribution with mean d.

The distribution of the maximal value does not depend on the calendar time at which

search stops. That is, for any t1 and t2,

E(M∗τ ) = E(M∗τ |τ∗ = t1) = E(M∗τ |τ∗ = t2) = d0.

■

Proof of Corollary 4: The proof is analogous to the proofs of Propositions 1 and 2. Since

the agent faces a flow expense of c(σ )−w at any point in time, similar arguments to those

in the proof of Claim 1 imply that

σ ∗ =
2(c(σ ∗)−w)
c′(σ ∗)

.

The stopping boundary is again linear and similar analysis to that in Claim 3 yields:

g(Mt) =Mt −
α(σ ∗)2

2(c(σ ∗)−w)
.

■

Proof of Proposition 4: The expressions describing E(Mτ ) and E(τ) follow directly from

the proof of Corollary 4, where the drawdown size is now given by α(σ ∗)2

2(c(σ ∗)−w) . The expected

returns that the principal and agent receive follow immediately. ■

Proof of Proposition 5: The principal’s problem, taking the agent’s solution from Corol-

lary 4 as given, can be written as:

max
α,w

(1−α)ασ ∗2

2(c(σ ∗)−w)
−w

(
ασ ∗

2(c(σ ∗)−w)

)2

subject to

σ ∗ =
2(c(σ ∗)−w)
c′(σ ∗)

.

The optimal search speed σ ∗ is pinned down uniquely by the choice of w. It follows

that if the principal induces a search speed of σ , the wages she needs to offer are given by:

w(σ ) = c(σ )− σc
′(σ )
2

.

Using this induced wage, we can rewrite the principal’s problem as a standard opti-
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mization problem:

max
α,σ

(1−α)ασ
c′(σ )

−
(
c(σ )− σc

′(σ )
2

)(
α

c′(σ )

)2

.

We soon show the conditions under which the first-order condition approach is valid.

When it is, taking the first-order conditions and setting them to 0 simplifies to:

w.r.t σ : 4αc(σ )c′′(σ ) + (2− 3α)c′(σ )2 + (α − 2)σc′(σ )c′′(σ ) = 0,

w.r.t α : α =
σc′(σ )

2c(σ ) + σc′(σ )
.

Using the expression generated for α in the constraint pertaining to σ and simplifying

yields:

σ =
4c(σ )

(σc′′(σ ) + c′(σ ))
.

The components of the Hessian corresponding to the principal’s objective are given by:

fαα ≡ −
σc′(σ ) + 2c(σ )

c′(σ )2 ,

fσσ ≡
α

2c′(σ )4

((
−12αc(σ )c′′(σ )2 + c′(σ )2 ((α − 2)σc′′′(σ ) + (8α − 4)c′′(σ ))

)
+c′(σ )

(
4αc(σ )c′′′(σ )− 2(α − 2)σc′′(σ )2

))
,

fασ ≡
4αc(σ )c′′(σ ) + (1− 3α)c′(σ )2 + (α − 1)σc′(σ )c′′(σ )

c′(σ )3 .

Since fαα is clearly negative, the first-order approach is valid whenever fααfσσ − (fασ )2 ≥ 0.

For example when the costs are exponential with coefficient b, that is c(σ ) = ebσ ,

α∗ =

√
17− 1

2
(

1
2

(√
17− 1

)
+ 2

) ≈ 0.438447

σ ∗ =

√
17− 1
2b

w∗ = e
1
2 (
√

17−1) − 1
4

(√
17− 1

)
e

1
2 (
√

17−1)

To observe that this is indeed a local maximer we check the hessian at the optimum

fααfσσ − (fασ )2|(α∗,σ ∗) =

(
7
√

17 + 17
)
e1−
√

17(√
17 + 3

)2
b2

> 0
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Thus α∗, σ ∗ w∗ are local maximizers for the principal. We also need to ensure that given b,

α and w the σ ∗ choice is also a maximizer for the agent. First we immediately notice that it

must be the case that for any wage that is considered we must have w < c(σ ) as otherwise

the gains of the agent is unbounded and the search newer concludes. The total payoff of

the agent as a function σ given that b,w and α is:

(α)2σ2

4
(
ebs −w

)
For an interior maximizer the second order condition with respect to σ is

α2
(
webσ

(
b2σ2 + 4bσ − 4

)
+ e2bσ

(
b2σ2 − 4bσ + 2

)
+ 2w2

)
4
(
ebσ −w

)3 < 0

we know we need w < ebσ for all σ ∈ [σ, σ̄ ] thus for b > 1 and σ such that ebσ > w∗ the

agent’s solution is indeed a maximizer. Whenever the first-order approach is invalid, the

principal chooses a boundary solution that, in turn, induces a boundary search speed for

the agent. The payoffs to the principal and and the agent are respectively, (3
√

17−11)e
1
2 −
√

17
2

4b2

and (31−7
√

17)2
e

1
2 −
√

17
2

(
√

17−1)3
b2

and a total welfare of −16(33
√

17−137)e
1
2 −
√

17
2

(
√

17−1)3
b2

. Without the contractual

frictions again under the assumption that b > 1 the expected payoff from the search is
1
b2e2 ≈ 0.135335

b2 . In other words the loss of welfare due to contractual frictions correspond

to approximately 24 percent.

■
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